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9.1 Introduction 

The main objective of the V3 study is to generate 
accurate and realistic future climate projections 
in order to assess and adapt to the impacts of 
climate change in Singapore. To achieve this, a 
subset of the latest and most advanced CMIP6 
GCMs that exhibit good performance over 
Southeast Asia has been carefully chosen to 
drive the regional dynamical downscaling 
simulations. 

Despite improvements made in both the global 
models and the regional climate model SINGV-
RCM, there are still residual biases present in 
the simulations, as shown in the evaluation 
chapter of the dynamical downscaling process 
(Chapter 7). In order to enhance the reliability of 
the climate change projections, it is necessary to 
adjust these biases. To achieve this, we 
conducted bias adjustments (BA) of the V3 
downscaled simulations using the widely 
recognized ISIMIP3 bias adjustment method 
(Lange, 2019). We also performed rigorous 
methodology evaluations. The aim was to 
ensure that the adjusted outcomes effectively 
reduced biases and were physically realistic. 
This adjustment process plays a crucial role in 
producing more accurate and dependable 
climate projections, which are essential for 
addressing climate change impacts in 
Singapore.  

By conducting bias adjustment of the V3 
downscaled simulations, we aim to refine the 
results and ensure they align more closely with 

observed data. Here we used the following 
references: (1) For precipitation, we utilized a 
newly developed krigged rainfall dataset for 
Singapore. (2) For other variables, we utilized 
the latest version of high-resolution ERA5-driven 
simulation dataset (ERA5-RCM). This dataset 
underwent careful evaluation and was found 
suitable for our bias adjustment purposes.  

In the data section, we will provide detailed 
information about the reference data and the 
model outputs used in our study. We will outline 
the sources and characteristics of the reference 
data as well as the specific model outputs from 
RCMs. 

In the methods section, we will elaborate on the 
specific configurations we utilized for each 
variable. These configurations have undergone 
thorough evaluation using pseudo reality 
experiments and have consistently yielded 
realistic outcomes. We will explain the 
methodology and approaches employed to 
ensure the reliability and accuracy of our results. 

Finally, in the results section, we will present the 
findings of the bias adjustment process for the 
model simulations, both in the historical period 
and in the future projections. Our bias 
adjustment techniques have demonstrated a 
very good performance. By applying these bias 
adjustments, we obtain more realistic RCM 
outputs, which are essential for conducting 
climate impact studies in the context of 
Singapore.

 
Table 9.1: List of downscaling simulations driven by sub-selected CMIP6 models 

CMIP6 model Ensemble ID ECS (K) GCM Resolution RCM Resolution 

ACCESS-CM2 r4i1p1f1 4.66 250km 8km, 2km 

EC-Earth3 r1i1p1f1 4.26 100km 8km, 2km 

MIROC6 r1i1p1f1 2.60 250km 8km 

MPI-ESM1-2-HR r1i1p1f1 2.98 100km 8km, 2km 

NorESM2-MM r1i1p1f1 2.49 100km 8km, 2km 

UKESM1-0-LL r1i1p1f2 5.36 250km 8km, 2km 

 

9.2 Data 

9.2.1 Simulations for bias adjustments 

In our study, we performed bias adjustments for 
regional climate model (RCM) downscaling 
simulations driven by six CMIP6 global climate 
models (GCMs) as shown in Table 9.1. It is 
worth noting that the downscaling simulation 

using the MIROC6 GCM was conducted only for 
the 8km resolution.  

Considering the availability of regional 
downscaling data (Table 9.2), we selected the 
20-year period from 1995 to 2014 as the 
historical base period for our analysis. This time 
frame allows us to capture a representative 
snapshot of the recent past and establish a 



 
 

baseline for comparison. For future projections, 
we focused on a 20-year period near the end of 
the 21st century to address the change, 
specifically from 2080 to 2099. By selecting 
these specific historical and future periods, we 

aimed to analyze and assess the changes in 
climate variables and their impacts over 
Singapore, providing valuable insights for 
climate change adaptation and planning in the 
region.

Table 9.2: Time period for model simulations 

Scenarios 
RCM @8km  

(SEA domain) 

RCM @2km  

(WMC domain) 

Historical 1955-2014 (60 yr) 1995-2014 (20 yr) 

Future (SSP126) 2015-2099 (85 yr) 2040-2059 (20 yr), 2080-2099 (20 yr) 

Future (SSP245) 2015-2099 (85 yr) 2040-2059 (20 yr), 2080-2099 (20 yr) 

Future (SSP585) 2015-2099 (85 yr) 2040-2059 (20 yr), 2080-2099 (20 yr) 

 

9.2.2 Domain for bias adjustments 
 
In our study, we defined three specific regions 
for analysis: the South East Asia domain (SEA), 
the West Maritime Continent domain (WMC), 
and Singapore (SG) (Table 9.3). These regions 
are depicted in Figure 9.1 as D1 and D2 for SEA 
and WMC, respectively, and Figure 9.2 

represents the SG domain. For the purpose of 
bias correction, we focused on conducting the 
adjustments specifically for the model 
simulations over the SG domain. To calculate 
Singapore-averaged results, we applied a 
landsea mask. This process enabled us to 
derive Singapore-specific climate information 
and assess the impacts of climate change on the 
country. 

Table 9.3: List of defined domains 

Domain 
Latitude and 

Longitude 

Grid info for 8km 

(lon) x (lat) 

Grid info for 2km 

(lon) x (lat) 
Remarks 

SEA 
18S-26N, 

80W-160W 
1120 x 560 N/A 8km model domain D1 

WMC 
7S-10N, 

93-110W 
237 x 236 936 x 943 2km model domain D2 

SG 
1.1N-1.54N, 

103.5W-104.15W 
10 x 7 36 x 24 

bias adjustment 

domain 

 

 

Figure 9.1: The V3 regional climate model domains. 8km resolution simulations are carried out over the D1 domain, and 

the 2km resolution simulations are carried out over the D2 domain. 



 

 

 
     Figure 9.2: Landsea mask for the SG region in the 2km resolution 

 

9.2.3 Variables for bias Adjustments 
 
Here we focus on the following daily variables to 
carry out the bias adjustment given their 

relevance to possible future climate impact 
studies as raised by key stakeholder groups 
(Table 9.4). 

 
Table 9.4: Variables for bias adjustment  

Variable 

Name 
Unit Description Relevance to impact studies 

pr mm/day 
daily mean of 

precipitation  

plays a crucial role in studying rainfall patterns, 

droughts, and wet spells 

tas °C 
daily mean of near 

surface air temperature 

essential factor in understanding and assessing 

climate conditions 

tasmax °C 
daily maximum of near 

surface air temperature 

providing insights into extreme heat events and 

temperature extremes 

tasmin °C 
daily minimum of near 

surface air temperature 

allowing for the analysis of cold spells and temperature 

variations 

hurs % 
daily mean of near 

surface relative humidity  

contributes to the understanding of moisture levels and 

atmospheric conditions 

sfcWind m/s 
daily mean of 10m wind 

speed 

important for studying wind patterns, gusts, and 

potential impacts on various sectors 

9.2.4 Gridded reference for bias 
adjustments 

To conduct bias adjustments, it is crucial to have 
gridded observations that cover Singapore and 
its surrounding area at a daily frequency and in 
spatial resolutions of 8km and 2km. However, it 
is challenging to find existing observation 
products that fully meet these requirements. As 
a result, additional efforts were undertaken to 
create suitable benchmark datasets for our 
study. 

Here we employed different approaches for 
different variables, as outlined in Table 9.5. For 
precipitation, we utilized station data and applied 
advanced spatial interpolation methods, 

specifically Kriging, to generate a gridded 
precipitation product. This allowed us to convert 
the point station data into a spatially distributed 
precipitation dataset, providing a more 
comprehensive representation of precipitation 
patterns over Singapore. For the variables of 
temperature (tas, tasmax, tasmin), relative 
humidity (hurs), and surface wind speed 
(sfcWind), we used the ERA5-RCMs as the 
gridded references. ERA5-RCM is the ERA5-
driven regional downscaling simulation using 
our own SINGV-RCM model (documented in the 
Chapter 6). By truncating the model outputs for 
the Singapore domain, we obtained gridded 
references that align with regional information 
provided by ERA5 reanalysis but focus on the 



 
 

spatial extent of Singapore. These ERA5-RCM-
based references were found to provide a 
realistic gridded representation of the selected 
variables over Singapore, exhibiting good 
agreement with the point station data across the 
region. 

It is important to note that while efforts were 
made to create the best available observation 
benchmarks, observations are not perfect. As 
new observation products become available in 
the future, the observation benchmarks can be 
updated to further improve the accuracy and 
representativeness of the gridded references.  

 
Table 9.5: Observation references 

Resolution Variable Source Period Additional remarks 

2km pr krig 1995-2014 using hourly rainfall from 28 stations 

8km pr krig 1995-2014 using hourly rainfall from 28 stations 

2km tas, tasmax, tasmin, 

hurs, sfcWind 

ERA5-

RCM 

1995-2014 using 2km daily output from ERA5-driven 

SINGV-RCM 

8km tas, tasmax, tasmin, 

hurs, sfcWind 

ERA5-

RCM 

1995-2014 2km daily ERA5-RCM remapped to 8km 

resolution 

9.3 Methods 

9.3.1 Bias Adjustment methods 

Bias adjustment is a common post-processing 
technique used in downscaling model 
applications. One may be aware of two basic 
“Delta” methods (e.g., Gleick, 1986, Hay et al., 
2000). The model-observation “Delta” method 
calculates the historical model-observation 
“mean” bias and adds this difference to the 
future model simulation to correct the “mean” 
bias in the future projection. The “Delta” method 
aims to reduce the systematic errors and bring 
the model closer to the observed reality. The 
other historical - future “Delta” method 
calculates the “mean” change in the simulations 
from the historical to future period, and adds this 
change to the historical observation. By 
construction, these “Delta” methods preserve 
the “mean” future change. They are 
straightforward approaches and can be useful 
when more sophisticated bias correction 
methods are not feasible due to data limitations 
or computational resources.  

Note that the delta method has its limitations. 
The delta method might not adequately capture 
biases in extreme events and high percentiles, 
given that the method assumes the model bias 
is constant across all quantiles. More advanced 
statistical methods like quantile mapping (QM) 
or distribution-based methods may be 
necessary to address more complex bias 
patterns and non-stationarities in the climate 
data. QM-based methods focus on correcting 
the cumulative distribution functions (CDFs) of 

climate variables, by acknowledging that the 
bias can vary across different parts of the 
distribution. The quantile mapping method 
corrects biases in both the mean and the shape 
of the distribution, making it more flexible in 
addressing complex bias patterns (Maraun, 
2016). 

The QM method itself has many developments 
over years and consists of a variety of 
implementation algorithms. By default, the 
conventional QM method (Pierce et al., 2015) 
does not preserve the future change (i.e., delta). 
The quantile delta mapping (QDM, Cannon et al. 
2015) involves identifying the differences in 
quantiles between the future projections and 
historical simulations and then applying these 
delta differences to adjust the entire CDF of the 
observations. Cannon et al. (2015) discussed 
and compared several quantile mapping 
techniques including conventional QM, 
detrended quantile mapping (DQM), and 
quantile delta mapping (QDM) in correcting 
precipitation outputs from GCMs based on a few 
precipitation extreme indices. The study pointed 
out that the QDM method shows advantages in 
its effectiveness of detrending the projection 
data through multiple quantiles, and capability of 
dealing with extreme model projections which 
may be beyond the scope of the historical record 
by using a superimposing algorithm.  

The basic delta method and the quantile 
mapping methods are both techniques used in 
statistical and climate modeling, particularly in 
the context of downscaling and bias correction. 
The choice between these methods depends on 



 
 

the specific characteristics of the data and the 
research objectives. They are often employed to 
bridge the gap between coarse-scale climate 
model projections and finer-scale regional or 
local projections. More extensive review of bias-
correction methods can be referred to Maraun 
(2016).  

 

9.3.2 V3 bias adjustment: ISIMIP3 method 

For the V3 study, we specifically sought a trend-
preserving method suitable for climate change 
studies. Various advanced methods have been 
developed for this purpose, and a 
comprehensive survey conducted by 
Casanueva et al. 2020 highlighted several 
popular bias adjustment methods. The study 
demonstrated that quantile trend-preserving 
methods, such as quantile delta mapping (QDM, 
Cannon et al. 2015), scaled distribution mapping 
(SDM, Switanek et al. 2017), and the bias 
adjustment method from the third phase of the 
Intersectoral Impact Model Intercomparison 
Project (ISIMIP3, Lange 2019), tend to preserve 
the raw signals better for different indices and 
variables considered.  

In line with these findings, for the V3 study, we 
have chosen to adopt the ISIMIP3 bias 
correction method. This method is designed to 
preserve the underlying trends and patterns in 
the data while effectively adjusting for biases, 
making them well-suited for our climate change 
analysis and ensuring the reliability and 
accuracy of our results.  

The ISIMIP community has made significant 
advancements in the development and 
refinement of bias adjustment methods over the 
years. Starting from the ISIMIP Fast Track 
method introduced by Hempel et al. in 2013, 
they have made subsequent updates in ISIMIP2 
(Frieler et al., 2017) and the most recent version, 
ISIMIP3 (Lange, 2019). These bias adjustment 
methods have been widely used in the climate 
impacts modeling community and have shown 
promising results. Researchers have employed 
ISIMIP2 in studies such as Peter et al. (2022), 
and ISIMIP3 has been utilized in the research 
conducted by Casanueva et al. (2020). These 
studies demonstrate the practical application 
and effectiveness of the ISIMIP bias adjustment 
methods in addressing biases in climate data for 
various modeling purposes. Furthermore, it is 
worth noting that the ISIMIP3 scripts are 
regularly updated to improve their functionality 

and performance. The updates from Version 1.0 
to the current Version 2.5 are publicly available 
(https://doi.org/10.5281/zenodo.4686991), 
providing researchers with the most up-to-date 
tools for implementing bias adjustment in their 
climate modeling studies. These updates ensure 
that the bias adjustment methods stay relevant 
and incorporate the latest advancements in the 
field. The continuous development and 
refinement of the ISIMIP bias adjustment 
methods reflect the commitment of the scientific 
community to enhance the accuracy and 
reliability of climate impact assessments and 
improve our understanding of climate change 
effects. 

One aspect of bias adjustment methods in 
climate modeling is to handle complex situations 
and address biases across various time scales 
and multivariate dependencies. Several studies 
have proposed advanced methods to handle 
such complexities and improve the performance 
of bias correction. For example, Mehrotra and 
Sharma (2016) developed a method to correct 
the duration of observed events using an auto-
regressive model, which can be particularly 
useful when simulations fail to capture the 
realistic duration of events.  

Additionally, Mehrotra and Sharma (2012) 
proposed recursive bias correction methods that 
can address biases across different time scales, 
ranging from daily to interannual, allowing for a 
comprehensive correction approach. In 
situations where there is a need to account for 
the multivariate dependence between variables, 
Cannon (2017) introduced multivariate methods 
that utilize lagged correlation and regression 
models. These approaches enable the 
correction of biases between variables such as 
precipitation (pr) and temperature (tas) at 
specific time scales, improving the overall fidelity 
of the simulation outputs. It's important to note 
that these advanced methods require sufficient 
high-quality data to robustly fit the parameters 
and achieve good performance. Overfitting can 
be a concern when data availability is limited, as 
it may lead to artifacts in the bias-corrected 
outcomes. Striking a balance between 
correcting biases and avoiding alterations to the 
fundamental physics represented in the raw 
simulations is crucial in order to maintain the 
integrity of the underlying climate models.  

In this context, the ISIMIP3 method offers a well-
balanced approach. It incorporates physical 



 
 

considerations while maintaining a reasonable 
level of complexity that can be adequately fitted 
to available data. Although it may not completely 
eliminate biases, ISIMIP3 provides sufficient 
bias reduction and adjusts future projections 
closer to the expected future conditions. By 
adopting the ISIMIP3 method, the V3 study can 
strike an appropriate balance between reducing 
biases and preserving the underlying physics of 
the raw simulations, allowing for more accurate 
and dependable climate impact assessments. 
While raw simulations can still offer valuable 
insights into the "Delta" changes, bias-adjusted 
simulations are particularly useful for obtaining 
accurate information regarding the absolute 
values, variability, and complete distribution of 
the climate variables. This ensures that the 
adjusted simulations provide reliable data for 
conducting climate impact studies.  

 

9.3.3 Bias adjustment configurations 

The ISIMIP3 bias adjustment method offers a 
comprehensive approach to correct biases in 
various quantiles across the distribution of 
variables. Compared to basic delta methods, 
ISIMIP3's quantile mapping approach provides 
a more detailed and nuanced correction by 
considering every quantile individually. ISIMIP3 
also allows for different fitting options, such as 
parametric fits or non-parametric fits, to ensure 
the best possible representation of the observed 
data. This flexibility enables the method to adapt 
to different variable characteristics and improve 
the accuracy of the bias-adjusted simulations. 
By adopting the configurations suggested by the 
ISIMIP3 paper (Table 9.6), our study ensures 
that the bias adjustments are carried out using 
recommended settings and approaches. This 
enhances the reliability and consistency of the 
bias-adjusted simulations for climate impact 
studies for Singapore.

 

Table 9.6: Bias adjustment configurations  

Variable Configurations 

pr python bias_adjustment.py --obs-hist=$FILE_OBS_HIST --sim-hist=$FILE_SIM_HIST --sim-
fut=$FILE_SIM_PROJ --sim-fut-ba=$FILE_OUTPUT --variable=$VARNAME --halfwin-upper-
bound-climatology 0 --lower-bound 0 --lower-threshold .1 --distribution gamma --trend-
preservation mixed --adjust-p-values True 

hurs python bias_adjustment.py --obs-hist=$FILE_OBS_HIST --sim-hist=$FILE_SIM_HIST --sim-
fut=$FILE_SIM_PROJ --sim-fut-ba=$FILE_OUTPUT --variable=$VARNAME --halfwin-upper-
bound-climatology 0 --lower-bound 0 --lower-threshold .01 --upper-bound 100 --upper-threshold 
99.99 --distribution beta --trend-preservation bounded --adjust-p-values True 

sfcWind python bias_adjustment.py --obs-hist=$FILE_OBS_HIST --sim-hist=$FILE_SIM_HIST --sim-
fut=$FILE_SIM_PROJ --sim-fut-ba=$FILE_OUTPUT --variable=$VARNAME --halfwin-upper-
bound-climatology 0 --lower-bound 0 --lower-threshold .01 --distribution weibull --trend-
preservation mixed --adjust-p-values True 

tas python bias_adjustment.py --obs-hist=$FILE_OBS_HIST --sim-hist=$FILE_SIM_HIST --sim-
fut=$FILE_SIM_PROJ --sim-fut-ba=$FILE_OUTPUT --variable=$VARNAME --halfwin-upper-
bound-climatology 0 --distribution normal --trend-preservation additive --detrend True 

tasrange python bias_adjustment.py --obs-hist=$FILE_OBS_HIST --sim-hist=$FILE_SIM_HIST --sim-
fut=$FILE_SIM_PROJ --sim-fut-ba=$FILE_OUTPUT --variable=$VARNAME --halfwin-upper-
bound-climatology 0 --lower-bound 0 --lower-threshold .01 --distribution rice --trend-
preservation mixed --adjust-p-values True 

tasskew python bias_adjustment.py --obs-hist=$FILE_OBS_HIST --sim-hist=$FILE_SIM_HIST --sim-
fut=$FILE_SIM_PROJ --sim-fut-ba=$FILE_OUTPUT --variable=$VARNAME --halfwin-upper-
bound-climatology 0 --lower-bound 0 --lower-threshold .0001 --upper-bound 1 --upper-threshold 
.9999 --distribution beta --trend-preservation bounded --adjust-p-values True 

tasmin tasmin = tas - tasskew x tasrange 

tasmax tasmax = tasrange + tasmin 

 



 
 

One important aspect of climate change studies 
is the preservation of the embedded global 
warming trends in the variables, particularly in 
temperature (tas). ISIMIP3 takes this into 
account and ensures that the trend present in 
the raw simulations is preserved during the bias 
correction process. This is crucial for capturing 
the long-term changes in climate variables and 
their impacts on various sectors. 

The 2-step procedure used by ISIMIP3 for bias 
adjustment of tasmax and tasmin variables 
ensures that the physical relationship between 
these variables is maintained during the 
correction process. In the first step, two 
intermediate variables, tasrange and tasskew, 
are derived. The tasrange represents the 
temperature range and is calculated as the 
difference between tasmax and tasmin 
(tasrange = tasmax - tasmin). Tasskew is a 
measure calculated as the ratio of the difference 
between tas and tasmin to tasrange (tasskew = 
(tas - tasmin) / tasrange). In the second step, 
bias adjustments are applied to tasrange and 
tasskew. Finally, using the bias-adjusted values 
of tasrange and tasskew, the bias-adjusted 
tasmin and tasmax are derived. The tasmin is 
calculated by subtracting the product of tasskew 
and tasrange from tas (tasmin = tas - tasskew x 
tasrange), and tasmax is obtained by adding 
tasrange to tasmin (tasmax = tasrange + 
tasmin). By incorporating this additional 
procedure, the ISIMIP3 method ensures that the 
physical consistency between tas, tasmax, and 
tasmin is preserved in the bias-adjusted 
simulations. This helps to maintain the 
appropriate temperature relationships and 
improves the overall realism of the corrected 
temperature variables. 

For precipitation (pr), ISIMIP3 includes specific 
treatments to address certain issues in the 
simulations. It implements a lower bound at 0 
mm/day to prevent negative (physically 
unrealistic) precipitation values. Additionally, a 
lower threshold at 0.1 mm/day is used to correct 
the drizzle issue commonly observed in 
simulations, where very low precipitation 
amounts are overestimated. These treatments 
improve the realism of the bias-adjusted 
precipitation simulations. 

The bias_adjustment.py script, along with the 
utility_function.py script, forms the main 
components for conducting bias adjustment in 
the ISIMIP3 method. Here's a breakdown of their 

functionalities: 1. bias_adjustment.py: This 
script serves as the main function for the bias 
adjustment process. 2. utility_function.py: This 
script contains various subroutines and utility 
functions that support the bias adjustment 
process. It includes functions for data handling, 
interpolation, statistical calculations, and other 
necessary operations. By utilizing these scripts 
and their functionalities, the bias adjustment 
process can be carried out effectively and 
efficiently. The scripts automate the correction 
procedure for each grid cell or station, ensuring 
consistency and coherence in the bias-corrected 
data across space and time.  

9.3.4 Combining 2km and 8km resolution 
bias-adjusted outputs  

We conducted bias adjustments for both the 
2km and 8km simulations in our study. The 2km 
simulations provide a detailed spatial pattern 
over Singapore and the West Maritime 
Continent, making them suitable for analyzing 
climate change on a local scale. However, it's 
important to note that the 2km simulations cover 
a shorter time period, specifically 1995-2014, 
2040-2059, and 2080-2099. To address the 
long-term trend, we also utilized the 8km bias-
corrected simulations, which cover a longer 
period from 1955 to 2014 for the historical period 
and from 2015 to 2099 for the future warming 
period. Although the 8km simulations give a 
coarser spatial resolution, they provide useful 
insights into the climate change over a broader 
time span. 

It is worth mentioning that the information and 
conclusions based on both the 2km and 8km 
simulations are consistent. We combined the 
results from both resolutions to address the 
long-term changes and capture the detailed 
spatial structure over Singapore. By 
incorporating strengths of the 2km and 8km 
simulations, we gained a comprehensive 
understanding of the climate change trends and 
their local implications. This approach ensures 
the robustness of our analysis and enhances the 
reliability of our findings. 

9.3.5 Advances from V2 to V3 

In the V2 study, bias adjustment was briefly 
addressed in Chapter 5 (Climate Change 
Projections, Annexe 5a: Description of the 
Quantile Matching technique applied to provide 
bias-corrected RCM outputs over Singapore). 
Here we highlight the advances in the V3 bias 



 
 

adjustment compared to the V2 study (Table 
9.7). These advancements have led to more 
accurate and reliable simulations, providing 

improved data for climate impact studies over 
Singapore. 

 
Table 9.7. Advances from V2 to V3 bias adjustment 

Advances in 
V3 

V2 V3 

higher 
resolution 

V2 study adjusted model output on 
the 12km resolution over singapore 
(8 grid cells) 

V3 study provided higher resolution bias-
adjusted outcome on the 8km (25 grid cells) and 
2 km resolution (over 300 grid cells) 

new observation 
reference 

V2 used stations across Singapore 
to aggregate into one CDF as the 
reference. 3 stations for 
temperature and humidity, one 
station for wind, and 28 stations for 
rainfall. There is no spatial 
information in the observation 
reference.  

V3 uses ERA5-RCM data to create gridded 
observational reference for temperature, 
humidity, and wind. V3 also uses 28 stations to 
create gridded rainfall reference. These efforts 
created gridded benchmarks for bias adjustment 
in the 8km and 2 km resolution.  

customised 
distributions 

V2 carried out the same 
configuration (i.e. multiplicative 
quantile mapping) to all the target 
variables.  

V3 applied customised configurations for 
individual variables. e.g., temperature using 
normal distribution, precipitation using Gamma 
distribution, relative humidity using beta 
distribution, and wind using Weibull distribution.  

trend-preserving 
V2 didn’t have treatments for the 
trend in the historical data and in 
the model simulations.  

V3 has additional treatment to preserve the 
trend.   

adjust rainfall 
frequency 

V2 didn’t have treatment for days 
with zero-rainfall and the low rainfall 
range.  

V3 applies a threshold at 0.1mm/day to adjust 
the rainfall frequency.  

flexible bins for 
CDF 

V2 used 1 percentile bin size to 
group data in the cumulative 
distribution function (CDF).  

V3 uses the default 0.5 percentile bin size for 
grouping. But it is adjusted automatically to 
make sure there are enough samples in each 
bin to handle zero-rain days.  

updated base 
period 

V2 used 1980-2009 30-year as the 
base period.  

V3 uses 1995-2014 20-year as the baseline, 
which is inline with the IPCC AR6 guidelines.  

 

9.4 Results: bias-adjustment for 
tas 
 

Historical gridded reference: The evaluation 
depicted in Figure 9.3 demonstrates a good 
agreement between the 12-month climatology of 
the ERA5-RCM and the observed temperature 
(tas) from five manned stations in Singapore 
(locations shown in Figure 9.3a). This 
agreement indicates that the ERA5-RCM 
simulations can serve as a reasonably realistic 
gridded reference for temperature (tas) in 
Singapore for the bias correction process.  

Bias-adjusted historical climatology: Figure 
9.4 illustrates the historical surface air 
temperature (tas) over Singapore, showing 
temperature peaks typically occurring around 
May. While the models are generally able to 
capture the seasonal cycle, they tend to 
overestimate the temperature by approximately 
1 degree Celsius. After applying the bias 
adjustment to the models, the corrected tas align 
much more closely with the observation 
reference, indicating a successful correction of 
the overestimation bias. The bias-adjusted 
simulations provide a more accurate 
representation of the observed temperature 
patterns over Singapore.

 



 

 
Figure 9.3. (a) map of manned station in Singapore. (b) 12-month climatology of tas in the historical period (1995-2014) 
from 5 manned stations (dotted) and from 2km-resolution ERA5-RCM gridcells across Singapaore (black is the gridcell 
mean) 
 

Bias-adjusted future climatology: The models 
consistently exhibit a tendency to overestimate 
the surface air temperature by approximately 1 
degree Celsius, both in the historical and future 
periods. After applying the bias adjustment 
based on the historical reference, the future tas 
projections are tuned down, bringing them into a 
more realistic range and better align with 
expectations based on the observational 
baseline. This bias adjustment helps to improve 
the accuracy of the future tas simulations. Figure 
9.5 provides visual evidence of this 
improvement in the bias-adjusted future tas 
projections. 
 
Future change largely preserved after bias 
adjustments: Figure 9.6 illustrates the 
projected changes in surface air temperature 
(tas) over Singapore. The results indicate a 
range of warming levels across models, ranging 
from approximately 2 to 5 degrees Celsius. On 
average, the models project a mean warming of 
around 4 degrees Celsius, representing a 15% 
increase in temperature. It is worth noting that 
these warming levels are consistent across 
seasons, indicating a relatively uniform 
temperature increase throughout the year. 
The comparison between the bias-adjusted 
simulations and the original projections 
demonstrates that the warming signals are 
largely preserved after the bias adjustment 

process. This indicates that the adjustments 
successfully correct the systematic biases 
without significantly altering the projected 
changes in tas. The preserved warming signals 
in the bias-adjusted simulations provide a more 
reliable representation of the expected future 
climate conditions over Singapore. 
 
Climate change patterns largely preserved 
by bias adjustments: Figure 9.7 illustrates the 
spatial pattern of projected warming signals 
across Singapore for both raw and bias-adjusted 
simulations from the UKESM1-0-LL model. It is 
evident that there are spatial differences in the 
projected warming, with northern Singapore 
exhibiting a larger warming signal compared to 
the southern parts of Singapore, which are 
closer to the open ocean.  

The bias adjustment process aims to preserve 
the spatial features of the warming signals while 
reducing systematic biases in the model 
simulations. The comparison for UKESM1-0-LL 
shows that both raw and bias-adjusted 
simulations keep consistency in the magnitude 
of the warming signal. Furthermore, the bias 
adjustment successfully preserves the spatial 
differences in the warming patterns. The larger 
warming signal observed in northern Singapore, 
as seen in the raw simulations, is also 
maintained in the bias-adjusted simulations.



 

 
Figure 9.4: Singapore domain-averaged tas at the 2km resolution in the historical period (1995-2014). a. observation 
reference (ERA5-RCM) and raw simulations. b. similar to a, but plotting bias-adjusted simulations.  

 

 
Figure 9.5: Singapore domain-averaged tas in the SSP585 future period (2080-2099) at the 2km resolution. a. raw 
simulations. b. bias-adjusted simulations.

 

 
Figure 9.6: Changes in the Singapore domain-averaged tas from the historical period (1995-2014) to the future period 
(2080-2099) under the SSP585 scenario at the 2km resolution. a. raw simulations. b. bias-adjusted simulations.  



 

 
Figure 9.7: 2km resolution Singapore tas change in July from the historical period to the future period under the SSP585 
scenario in the UKESM1-0-LL. a. raw simulations. b. bias-adjusted simulations. 
 

Bias-adjusted distribution: Figure 9.8 
presents the distributions of daily tas (surface air 
temperature) for both raw and bias-adjusted 
simulations from individual models, along with 
the reference distribution from ERA5-RCM. It is 
shown that the overall distribution of daily tas 
follows a normal distribution. 

The bias adjustment process successfully brings 
the model simulations into better agreement with 
the observed distribution. Furthermore, when 
considering the effect of warming on tas, models 

that initially overestimate the warming are tuned 
down during the bias adjustment process. This 
can be observed in Figure 9.8b. This 
downshifted distribution reflects the adjustment 
made to bring the models' projected warming to 
a more realistic range. Overall, the bias 
adjustment method ensures that the bias-
adjusted simulations provide a more accurate 
representation of the expected distribution of 
daily tas, considering both historical 
observations and projected future changes.

 
Figure 9.8: (a) July CDF of tas at gridcells across Singapore for the historical period (1995-2014). Here the ref_h is ERA5-
RCM, model_h_raw are raw simulations, and model_h_adjusted are adjusted models. (b) July CDF for the future period 
(2080-2099) under the SSP585 scenario. 
 

Trend in annual mean tas: Figure 9.9 
highlights the climate change signal in tas 
(surface air temperature) and the performance 
of the bias-adjusted simulations in capturing this 
signal. It demonstrates that the bias-adjusted tas 
successfully preserves the warming trend 
associated with climate change. 

In the historical period, the time series of tas in 
the models are adjusted to match the mean of 
the observed data. This adjustment ensures that 
the model simulations are consistent with the 

observed mean temperature, providing a more 
accurate representation of historical climate 
conditions. Furthermore, the variability range of 
the adjusted simulations in the historical period 
is similar to that of the observations. This 
suggests that the bias adjustment process not 
only corrects for biases in the mean tas but also 
addresses discrepancies in the variability, 
allowing the adjusted simulations to capture the 
observed range of temperature variations.  



 

Looking into the future period, the bias-adjusted 
time series provide a more realistic projection of 
tas. The adjusted simulations not only capture 
the adjusted mean temperature but also 
maintain a realistic range of variability. Overall, 
the bias-adjusted tas preserves the important 
climate change signal by capturing the warming 

trend and matches the mean and variability of 
the observations in the historical period. In the 
future period, the adjusted simulations offer a 
more realistic projection of tas, ensuring that the 
bias adjustment process enhances the accuracy 
and reliability of the model outputs.

 

 
Figure 9.9: (a) 8km resolution Singapore domain-averaged tas in the historical period. (b) tas in the future period under the 
SSP585 scenario. Observation reference is in black (ERA5-RCM). Raw simulations are in blue, and bias-adjusted 
simulations are in red. 
 

9.5 Results: bias-adjustment for 
tasmax 
 
Historical gridded reference: Here we use 
ERA5-RCM as the historical reference. 
Comparison showed that the 12-month 

climatology of tasmax observations from 5 
manned stations in Singapore are within the 
range of the climatology of tasmax at each 
gridcells from the ERA5-RCM (Figure 9.10). It 
indicates that ERA5-RCM can provide a 
reasonably realistic gridded reference for 
tasmax.   

 
Figure 9.10. (a) Map of manned stations in Singapore. (b) 12-month climatology of tasmax from 5 manned stations (dotted) 
and from ERA5-RCM gridcells across Singapaore (black is the gridcell mean). 

 
Bias-adjusted historical climatology: 
Historical tasmax over Singapore shows 
temperature peaks around March-April-May 
(Figure 9.11). Models are able to simulate the 

seasonal cycle but tend to overestimate the tas 
for ~1°C. Bias-adjusted simulations match with 
the observation reference (Figure 9.11).  



 

Bias-adjusted future climatology: Models 
tend to overestimate the temperature in both 
historical and future period. Adjusted tasmax is 
tuned down to provide a more realistic future 
projection (Figure 9.12). 
 

Climate change signal preserved by bias 
adjustments: As to the change, models project 
warming ranging from ~2.5 to ~5.5°C (Figure 
9.13) with the mean around 4°C (~13% 
increase). The warming levels are similar across 
seasons. Bias adjustments largely preserve the 
warming.

 
 

 
Figure 9.11: Singapore domain-averaged tasmax in the historical period (1995-2014). (a) observation reference (ERA5-
RCM) and raw simulations. (b) similar to a, but plotting bias-adjusted simulations. 
 
 

 
Figure 9.12: Singapore domain-averaged tasmax in the SSP585 future period (2080-2099) at a 2km resolution. a. raw 
simulations. b. bias-adjusted simulations. 



 

 

Figure 9.13: Changes in the Singapore domain-averaged tasmax from the historical period (1995-2014) to the future period 
(2080-2099) under the SSP585 scenario. a. raw simulations. b. bias-adjusted simulations. 

Climate change patterns preserved by bias 
adjustments: Similar to the warming pattern of 
tas, future change of tasmax in both raw and 
adjusted simulations show a larger warming in 
the northern Singapore compared to the 
southern Singapore (Figure 9.14).  

Bias-adjusted distribution: Distributions of 
modelled tasmax are adjusted to the reference 
distribution (ERA5-RCM) for the historical period 
(Figure 9.15). Under warming, distributions of 
tasmax are tuned down slightly.  

Trend in annual mean tasmax: Here we show 
time series of tasmax in models are adjusted to 
match observation mean in the historical period 
(Figure 9.16). Also the variability range of the 
adjusted simulations is similar to the 
observation. In the future period, adjusted time 
series provide more realistic projection with 
adjusted mean and variability. Here bias 
adjustment preserved the warming trend in 
tasmax. 

 

 
Figure 9.14: 2km resolution Singapore tas change in July from the historical period to the future period under the SSP585 
scenario. a. raw simulations. b. bias-adjusted simulations.

 



 

 
Figure 9.15: a. July CDF of tasmax at gridcells across Singapore for the historical period (1995-2014). Reference is the 
ERA5-RCM. b. July CDF for the future period (2080-2099) under the SSP585 scenario.

  

 
Figure 9.16: 8km resolution Singapore domain-averaged tasmax in the historical period (a) and in the future period (b) 
under the SSP585 scenario. Observation reference (ERA5-RCM) is in black. Raw simulations are in blue, and bias-adjusted 
simulations are in red. 
 
 

9.6 Results: bias-adjustment for 
tasmin 
 
Historical gridded reference: Here we use 
ERA5-RCM as the historical reference. We 
compared the 12-month climatology of the 
ERA5-RCM with tasmin observations from 5 
manned stations in Singapore, and the results 
(Figure 9.17) show that ERA5-RCM can provide 
a reasonably realistic gridded reference. 
 
Bias-adjusted historical climatology: The 
models exhibit similar overestimated biases for 
tasmin. After applying bias-adjustment 
techniques, the simulations better align with the 

observational reference, as shown in Figure 
9.18. 
 
Bias-adjusted future climatology: Models 
tend to slightly overestimate the tasmin in both 
historical and future period. Adjusted tasmin is 
tuned down to provide a more realistic future 
projection (Figure 9.19). 
 
Climate change preserved by bias 
adjustments: As to the change of tasmin 
(Figure 9.20), models project warming ranging 
from ~2 to ~5°C with the mean warming around 
4°C (~15% increase). The warming levels are 
similar across seasons. Bias adjustment can 
preserve the change signal. 
   
 



 

 
Figure 9.17. a. Map of manned stations in Singapore. b. 12-month climatology of tasmin in the historical period (1995-2014) 
from 5 manned stations (dotted) and from ERA5-RCM gridcells across Singapaore (black is the gridcell mean).  

 

 
Figure 9.18: Singapore domain-averaged tasmin in the historical period (1995-2014) at a 2km resolution. a. observation 
reference (ERA5-RCM) and raw simulations. b. similar to a, but plotting bias-adjusted simulations.   
 

 

Figure 9.19: Singapore domain-averaged tasmin in the future period (2080-2099) under the SSP585 scenario 
at a 2km resolution. a. raw simulations. b. bias-adjusted simulations. 



 

 

Figure 9.20: Changes in the Singapore domain-averaged tasmin from the historical period (1995-2014) to the future period 
(2080-2099) under the SSP585 scenario at a 2km resolution. a. raw simulations. b. bias-adjusted simulations. 

   

Climate change patterns preserved by bias 
adjustments: Similar to the warming pattern of 
tas, future change of tasmin (Figure 9.21) in both 
raw and adjusted simulations show a larger 
warming in the northern Singapore compared to 
the southern Singapore.   
 
Bias-adjusted distribution: Distributions of 
modeled tasmin are adjusted to the reference 
distribution (ERA5-RCM) for the historical period 
(Figure 9.22). Under warming, distributions of 

tasmin are tuned down to a more reasonable 
range of warming.  
 
Trend in annual mean tasmin: Here we show 
time series of tasmin in models are adjusted to 
match observation mean in the historical period 
(Figure 9.23). Also the variability range of the 
adjusted simulations is similar to the 
observation. In the future period, adjusted time 
series provide more realistic projection with 
adjusted mean and variability. Bias adjustment 
preserves the warming trend.  

 

 
Figure 9.21: 2km resolution Singapore tasmin change in July from the historical period (1995-2014) to the future 
period (2080-2099) under the SSP585 scenario simulated by UKESM1-0-LL. a. raw simulations. b. bias-
adjusted simulations.  



 

 

Figure 9.22: a. July CDF of tasmin at gridcells across Singapore for the historical period (1995-2014). b. July CDF for the 
future period (2080-2099) under the SSP585 scenario. 

 

 

Figure 9.23: a. 8km resolution Singapore domain-averaged tasmin in the historical period. b. tasmin in the future 
period under the SSP585 scenario. Observation reference is in black (ERA5-RCM). Raw simulations are in 
blue, and bias-adjusted simulations are in red. 
 

9.7 Results: bias-adjustment for 
pr 
 
Historical gridded reference: The 
Meteorological Service Singapore (MSS) has 
established a network of 93 automatic weather 
stations (AWS) across Singapore since 2009. 
However, for long-term rainfall records, there 
are only around 28 rain-gauge stations available 
dating back to 1980. Figure 9.24 illustrates the 
locations of these rain gauges, revealing a 
limited spatial coverage particularly in western 
and eastern Singapore. 

To overcome this spatial limitation, a gridded 
daily rainfall dataset was created using 

geostatistical interpolation techniques. The 
Python package PyKrige, as described by 
Murphy et al. (2020), was utilized for this 
purpose. The interpolation was performed on 
daily rainfall data aggregated from the hourly 
data collected at each station. Only days with at 
least one non-zero rainfall value were 
considered, while days with no rainfall were 
assigned a zero value. The geostatistical 
interpolation employed the concept of Ordinary 
Kriging, which is a spatial interpolation method 
based on variograms. A spherical 
semivariogram model was chosen to capture the 
spatial autocorrelation and variability of rainfall 
as a function of the separation distance between 
each pair of stations. The selection of the 
spherical model was based on the work of 



 

Muhammad Ali and Othman (2017), who 
evaluated various semivariogram models and 
found the spherical model to be the most 
appropriate for the Kelang River basin in 
Peninsular Malaysia. By applying geostatistical 
interpolation using PyKrige and the spherical 
semivariogram model, the gridded daily rainfall 
dataset was generated, providing a more 
comprehensive representation of rainfall across 
Singapore. This dataset helps address the 
limited spatial coverage of rain-gauge stations 
and allows for a more accurate analysis and 
understanding of rainfall patterns and variability 
in the region. 

The daily rainfall observations from 1980 to 
2021 were subjected to spatial interpolation 
using kriging techniques, specifically applied to 
the SINGV-RCM 2-km and 8-km grid. This 

interpolation process resulted in a gridded 
representation of rainfall station data. For this 
study, the kriged rainfall observations for the 
period 1995-2014 were chosen as the reference 
dataset. 

Comparisons between the kriged rainfall and 
individual rain gauges revealed good agreement 
in terms of climatological patterns. This 
agreement suggests that the kriged precipitation 
data can serve as a suitable gridded observation 
reference. By utilizing kriging interpolation, the 
study was able to fill in spatial gaps and provide 
a more comprehensive representation of rainfall 
across the region. Using the kriged rainfall 
observations as the reference, the study can 
effectively assess and analyze the model 
performance in capturing the spatial and 
temporal characteristics of precipitation.

 

 

Figure 9.24: a. Map of 28 rain gauge stations in Singapore. b. 12-month climatology of pr in the historical period 
(1995-2014) from 28 pr stations (dotted) and from 2km-resolution krig gridcells across Singapore (black is the 
gridcell mean). 

 
Bias-adjusted historical climatology: 
Historical rainfall over Singapore shows a 
seasonal transition between weather types 
(Figure 9.25). It starts from a wet winter due to 
the Northeast monsoon, followed by another wet 
April due to frequent squalls moving across 
Singapore. Then comes the dry summer and 
autumn due to Southwest monsoon. Here five 
SINGV RCM models show varying wet/dry 
biases compared to the observation reference. 
In particular, models appear to underestimate 
the January-March rainfall. Bias-adjusted 
simulations match closely with the reference 
(Figure 9.25).  

Bias-adjusted future climatology: Here we 
show that (Figure 9.26) raw future rainfall is also 

low in Jan-Feb (systematic bias, similar to the 
historical rainfall, see Figure 9.25). After bias-
adjustment, the Jan-Feb rainfall is more close to 
the magnitude of the observation reference.  

Climate change overall preserved by bias 
adjustments: After bias adjustments, models 
tend to agree that SG may become drier (-
3mm/day) by 25% (Figure 9.27) in Jan-Feb and 
July-Sept, while wetter (+2mm/day) by 20% in 
May and Nov-Dec. One may notice that the 
future rainfall changes are tuned down slightly 
after bias adjustments, unlike the changes in the 
surface air temperature. It is heavily due to the 
nonlinearity and skewed distribution in rainfall 
(Figure 9.29) compared to the relatively normal 
distribution in temperature (Figure 9.8). For 



 

temperature, the biases are mainly in the mean 
instead of the shape of the distribution. 
However, the biases in rainfall are embedded in 
the whole distribution.  

In the process of recalibrating historical and 
projected precipitation within these skewed 
distributions, the overall direction of change 
remains largely intact. However, there is 
potential for a minor adjustment in the 

magnitude of mean future changes. It is crucial 
to also recognize that raw future changes, when 
derived from biased simulations, do not 
inherently represent accurate projections. 
Consequently, changes after the bias 
adjustments could lead to alterations that are 
more aligned with realistic expectations. This 
bias adjustment practice does not alter the 
understanding and main conclusions as to the 
future changes. 

 

Figure 9.25: Singapore domain-averaged pr in the historical period (1995-2014) at a 2km resolution. a. 
observation reference (station krig pr) and raw simulations. b. similar to a, but plotting bias-adjusted simulations.  
 

 

Figure 9.26: Singapore domain-averaged pr in the future period (2080-2099) under the SSP585 scenario. a. raw 
simulations. b. bias-adjusted simulations.   



 

 

Figure 9.27: Percentage changes in the Singapore domain-averaged pr from the historical period (1995-2014) to the future 
period (2080-2099) under the SSP585 scenario at a 2km resolution. a. raw simulations. b. bias-adjusted simulations.  
  

Climate change patterns preserved by bias 
adjustments: Singapore is controlled by 
southwest monsoon duing the JJAS season. 
Here future changes in pr projected by 
ACCESS-CM2 (Figure 9.28) in both raw and 
adjusted simulations show a larger reduction of 
rainfall in the south-western Singapore 
compared to the north-eastern Singapore.  Note 
that bias adjustment still preserve the spatial 
feature of the change even though the change 
magnitude is reduced after bias adjustment.  

Bias-adjusted distribution: Distributions of 
modeled pr (overestimated as to the reference) 

are adjusted to the reference distribution (station 
kriged) for the historical period (Figure 9.29). 
Under warming, distributions of overestimated 
July pr are tuned down. 

Trend in annual mean pr: Here we show time 
series of rainfall in models are adjusted to match 
observation mean in the historical period (Figure 
9.30). Also the variability range of the 
simulations is reduced to match the observation. 
In the future period, adjusted time series provide 
more realistic projection with adjusted mean and 
variability.   

 

 

Figure 9.28: 2km resolution Singapore pr change in July from the historical period (1995-2014) to the future 
period (2080-2099) under the SSP585 scenario. a. raw simulations. b. bias-adjusted simulations.  



 

 

Figure 9.29: a. July CDF of pr at 2km resolution gridcells across Singapore for the historical period (1995-2014). 
b. July CDF for the future period (2080-2099) under the SSP585 scenario. 
 

 

Figure 9.30: a. 8km resolution Singapore domain-averaged annual mean pr in the historical period. b. pr in the 
future period under the SSP585 scenario. Observation reference is in black (station krig pr). Raw simulations 
are in blue, and bias-adjusted simulations are in red.  

 
 

9.8 Results: bias-adjustment for 
hurs 
 

Historical gridded reference: Here we use 
ERA5-RCM as the historical reference. We 
compared the 12-month climatology of the 
ERA5-RCM with observations from 5 manned 
stations in Singapore, and the results (Figure 
9.31) show that ERA5-RCM can provide a 
reasonably realistic gridded reference for hurs.   

Bias-adjusted historical climatology: Models 
tend to underestimate the hurs in Jan-April, and 
bias-adjusted simulations match with the 
reference (Figure 9.32).  

Bias-adjusted future climatology: Models 
tend to underestimate the magnitude in the 
future period during Jan- April. Adjusted 
simulations tune up the magnitude which 
becomes more realistic (Figure 9.33). Moreover, 
the seasonal cycle is adjusted to match better 
with the observation reference.  

Climate change largely preserved by bias 
adjustments: Models tend to project reduction 
of the hurs (-2.5% in value as in Figure 9.34,  -
3% in percentage changes) across all seasons 
except in May. Bias adjustments largely 
preserve the change. 



 

 

 
Figure 9.31. a. Map of manned stations in Singapore. b. 12-month climatology of hurs in the historical period 
(1995-2014) from 5 manned stations (dotted) and from ERA5-RCM gridcells across Singapore (black is the 
gridcell mean) at a 2km resolution.  
 

 

Figure 9.32: Singapore domain-averaged hurs in the historical period (1995-2014) at a 2km resolution. a. 
observation reference (ERA5-RCM) and raw simulations. b. similar to a, but plotting bias-adjusted simulations.  
  

 

Figure 9.33: Singapore domain-averaged hurs in the future period (2080-2099) under the SSP585 scenario at a 
2km resolution. a. raw simulations. b. bias-adjusted simulations.   
 



 

 

Figure 9.34: Changes in the Singapore domain-averaged hurs from the historical period (1995-2014) to the 
future period (2080-2099) under the SSP585 scenario at a 2km resolution. a. raw simulations. b. bias-adjusted 
simulations.   
 

Climate change patterns preserved by bias 
adjustments: Here future change of hurs 
projected by UKESM1-0-LL (Figure 9.35) in both 
raw and adjusted simulations show a larger 
reduction of hurs in the north-western Singapore 
compared to the south-eastern Singapore.  Note 
that bias adjustments preserve the spatial 
feature of the change.  

Bias-adjusted distribution: Distributions of 
modeled hurs are adjusted to the reference 
distribution (ERA5-RCM) for the historical period 
(Figure 9.36). Under warming, distributions of 

overestimated and underestimated July hurs are 
all adjusted accordingly. 

Trend in annual mean hurs: Here we show 
time series of hurs in models are adjusted up to 
match observation mean in the historical period 
(Figure 9.37). Also the variability range of 
simulations is reduced to match the observation. 
In the future period, adjusted time series provide 
more realistic projection with adjusted mean and 
variability. Bias adjustment also preserve the 
trend. 

 

 

Figure 9.35: UKESM1-0-LL simulated 2km resolution Singapore July hurs change from the historical period 
(1995-2014) to the future period (2080-2099) under the SSP585 scenario. a. raw simulation. b. bias-adjusted 
simulations.  

 



 

 
Figure 9.36: a. July CDF of hurs at 2km resolution gridcells across Singapore for the historical period (1995-
2014). The reference is the station kriged rainfall. b. July CDF for the future period (2080-2099) under the 
SSP585 scenario. 

 
Figure 9.37: a. 8km resolution Singapore domain-averaged hurs in the historical period. b. hurs in the future 
period under the SSP585 scenario. Observation reference is in black. Raw simulations are in blue, and bias-
adjusted simulations are in red. 
 

9.9 Results: bias-adjustment for 
sfcWind 
 

Historical gridded reference: We use the 
ERA5-RCM as the observation reference. We 
compared sfcWind climatology of all gridcells 
over Singapore from ERA5-RCM with 21 station 
data. Results (Figure 9.38) show that station 
sfcWind are largely within/overlap with the 
ERA5-RCM range, which suggests that ERA5-
RCM data is a suitable product to provide a 
gridded estimate for sfcWind. 

Bias-adjusted historical climatology: Surface 
wind speed over Singapore shows stronger wind 
during the monsoon seasons (Northeast and 
Southwest Monsoon season) and weaker wind 

during the intermonsoon transition period 
(Figure 9.39). Models overall overestimate the 
magnitude of sfcWind during the winter 
monsoon season. Bias-adjusted simulations 
match with the observation reference. 

Bias-adjusted future climatology: Models 
overestimate the sfcWind in the winter monsoon 
season. Here adjusted future projection of 
sfcWind is tuned down for winter season (Figure 
9.40).  

Climate change preserved by bias 
adjustments: As to the future change, models 
project increase in the sfcWind (~0.5m/s in 
Figure 9. 41, or ~12% change) during the 
monsoon seasons (DJFM, and JJAS) except in 
the intermonsoon seasons (May, and Nov).



 

 

Figure.9.38 a. map of 21 stations on sfcWind. b. 12-month climatology in the historical period of station sfcWind 
(dotted) versus gridcells from ERA5-RCM (black is the gridcell mean) over Singapore. 
 

 

Figure 9.39: 12-month climatology of Singapore domain-averaged sfcWind in the historical period (1995-2014) 
at a 2km resolution. a. observation reference (ERA5-RCM, black) and raw simulations. b. similar to a, but plotting 
bias-adjusted simulations.   
 

 

Figure 9.40: Singapore domain-averaged sfcWind in the future period (2080-2099) under the SSP585. a. raw 
simulations. b. bias-adjusted simulations.  



 

 
Figure 9.41: Percentage changes in the Singapore domain-averaged sfcWind from the historical period (1995-
2014) to the future period (2080-2099) under the SSP585 scenario. a. raw simulations. b. bias-adjusted 
simulations.  
 

Climate change patterns preserved by bias 
adjustments: Future change of sfcWind shows 
a larger increase at the coastal area of 
Singapore (Figure 9.42). Bias adjustment largely 
preserves the future change.  

Bias-adjusted distribution: Distributions of 
modeled sfcWind are adjusted to the reference 
distribution (ERA5-RCM) for the historical period 
(Figure 9.43). Under warming, distributions of 
overestimated and underestimated July sfcWind 
are all adjusted accordingly. 

Trend in annual mean sfcWind: Here we show 
the annual mean sfcWind in models are reduced 
to match observation mean in the historical 
period (Figure 9.44). Also the variability range of 
the adjusted simulations is similar to the 
observation. In the future period, adjusted time 
series provide more realistic projection with 
adjusted mean and variability. Bias adjustment 
also preserves the trend.  

 
Figure 9.42: UKESM1-0-LL simulated 2km resolution Singapore July sfcWind change from the historical period 
to the future period under the SSP585 scenario. a. raw simulation. b. bias-adjusted simulations. 

 



 

 

Figure 9.43: a. July CDF of sfcWind at 2km resolution gridcells across Singapore for the historical period (1995-
2014). The reference is ERA5-RCM. b. July CDF for the future period (2080-2099) under the SSP585 scenario. 

 

 

Figure 9.44: a. 8km resolution Singapore domain-averaged sfcWind in the historical period. sfcWind in the future 
period under the SSP585 scenario. Observation reference is in black. Raw simulations are in blue, and bias-
adjusted simulations are in red. 
 

9.10 Results: bias-adjusted 
climate impact indices 
 

9.10.1 Derived extreme indices 
Table 9.8 showcases the extreme indices 
calculated for impact studies based on essential 
variables, such as daily precipitation, maximum 
temperature, and minimum temperature.  

The application of bias adjustments to those 
base variables leads to a substantial reduction 
in biases within the derived indices. This 
demonstrates that the bias adjustments not only 
enhance the accuracy and reliability of the raw 
model output but also ensure that the resulting 

indices accurately represent the desired 
characteristics of extreme events.  

By mitigating biases in the derived indices, we 
can now have greater confidence in the validity 
and usefulness of the data for understanding 
and addressing extreme climate events. This 
improvement in data quality is of great 
importance in various fields, from climate 
research to policy-making and disaster 
preparedness. 

Here we will show two examples of the derived 
frequency indices. One is the CWD (consecutive 
wet days), the other one is the R20mm (Number 
of very heavy precipitation days when 
pr>=20mm).



 

Table 9.8: Derived indices after the bias correction  

Variables Unit Base variable Description 

RX1day mm pr Maximum 1-day precipitation  

RX5day mm pr Maximum 5-day precipitation 

PRCPTOT mm pr Total precipitation during Wet Days  

R10mm days pr Number of heavy precipitation days (pr>=10mm) 

R20mm days pr Number of very heavy precipitation days (pr>=20mm) 

CWD days pr Maximum consecutive wet days (pr>=1mm) 

CDD days pr Maximum consecutive dry days (pr<1mm) 

TXx °C tasmax Maximum daily maximum temperature 

TXn °C tasmax Minimum daily maximum temperature 

TNx °C tasmin Maximum daily minimum temperature 

TNn °C tasmin Minimum daily minimum temperature 

9.10.2 CWD and its future change 
Let's consider the example of the consecutive 
wet days (CWD) index. It measures the 
maximum number of consecutive days with 
precipitation greater than or equal to 1mm, is an 
important measure of rainfall frequency. In 
Singapore, the CWD exhibits a seasonal cycle, 
with longer durations of wet days observed in 
April and during the winter monsoon season, 
and shorter durations during the dry (summer 
monsoon) season. This seasonal pattern 
generally aligns with the monthly mean rainfall 
climatology. 

During the historical period, the SINGV-RCMs 
tend to underestimate the duration of wet days 
compared to the observation reference, with an 
average difference of around 3 days 
(observation reference: ~7 days). It is important 
to note that direct bias correction for the CWD 
index was not performed in this study, hence a 
perfect match is not expected. However, the 
bias-adjusted model simulations exhibit a much 

closer agreement with the observations (Figure 
9.45), indicating that the bias adjustments have 
significantly improved the accuracy of the model 
outputs for the CWD index.  

The close agreement between the bias-adjusted 
model simulations and the observation 
reference for the CWD index suggests that the 
bias correction approach employed in this study 
has effectively addressed the systematic biases 
in the SINGV-RCMs, leading to more reliable 
and realistic estimates of the duration of wet 
days. 

As to the future change, raw model simulations 
also underestimate the CWD (Figure 9.46). And 
bias-adjusted simulations tuned up to show a 
more realistic magnitude of CWD for the future 
period.  

The raw CWD shows a reduction (i.e., a shorter 
duration of wet days) under warming (Figure 
9.47). After bias adjustments, the CWD values 
are tuned up, and the reduction range is also 
enlarged.



 

 

Figure 9.45: Singapore domain-averaged CWD in the historical period (1995-2014). a. observation reference 
(station krig pr) and raw simulations. b. similar to a, but plotting bias-adjusted simulations.  Note that the value 
of CWD represents the wet days starting from individual month instead of truncated to the given month. 
 

 

Figure 9.46: Singapore domain-averaged CWD in the SSP585 future period (2080-2099). a. raw simulations. b. 
bias-adjusted simulations.   

 
Figure 9.47: Changes in the Singapore domain-averaged CWD from the historical period (1995-2014) to the 
future period (2080-2099) under the SSP585 scenario. a. raw simulations. b. bias-adjusted simulations. 



 

 

9.10.3 R20mm and its future changes 
Here we show the other example of the 
frequency-based extreme index R20mm 
(Number of very heavy precipitation days 
(pr>=20mm), in days in unit). The dry season 
(JJAS) shows fewer days of the R20mm, while 
the wet season (NDJ and April) shows more 
days of R20mm. It overall follows the seasonal 
cycle of the mean rainfall.  

Figure 9.48 shows that models tend to 
underestimate the R20mm in JFMA, but 
overestimate the R20mm in JJAS. The bias-
adjusted simulations match R20mm with the 
observation very well. Note that the R20mm was 

not directly bias-adjusted but derived from the 
bias-adjusted pr. It indicates the bias adjustment 
in base variables like pr are successful and 
useful for impact studies.  

Figure 9.49 showed the future R20mm under the 
SSP585 scenario. Future simulations tend to 
have similar biases as the historical period. After 
bias adjustments, JFMA season R20mm are 
tuned down, and the JJAS season R20mm are 
tuned down. 

Figure 9.50 showed the future change of 
R20mm. The reduction in heavy rainfall days are 
mainly in the  JJAS season. After the bias 
adjustment, the R20mm in the JJAS season are 
tuned down and the changes are also reduced. 

 
Figure 9.48: Singapore domain-averaged R20mm in the historical period (1995-2014) at a 2km resolution. a. 
observation reference (station krig pr) and raw simulations. b. similar to a, but plotting bias-adjusted 
simulations.  
 

 

Figure 9.49: Singapore domain-averaged R20mm in the future period (2080-2099) under the SSP585 scenario. 
a. raw simulations. b. bias-adjusted simulations.   



 

 

Figure 9.50: Percentage changes in the Singapore domain-averaged R20mm from the historical period (1995-
2014) to the future period (2080-2099) under the SSP585 scenario at a 8km resolution. a. raw simulations. b. 
bias-adjusted simulations. 
 
  

9.11 Evaluations using pseudo 
reality experiments 
We showed in above results that bias 
adjustments are very useful to remove the 
systematic biases in models, provide more 
realistic simulations, and largely preserve the 
change and long-term trend. We have to 
acknowledge that bias-adjusted projections still 
have inevitable uncertainties given that we do 
not know what the actual future will look like in 
the reality. To provide more confidence, here we 
conduct an evaluation using a pseudo reality 
experiment. The main objective of this 
experiment was to assess the performance of 
the bias adjustment method by comparing the 
bias-adjusted simulations with a designated 
reference model that represents an alternative 
plausible reality. 

The experiment involved selecting one CMIP6 
model, specifically MPI-ESM1-2-HR, as the 
reference model, while the other four CMIP6 
models were treated as test models (Table 9.9). 
The study domain focused on the West Maritime 
Continent (WMC) with a spatial extent of [7S-
10N, 93-110W]. For the GCMs with a resolution 
of 1.5 degrees, this corresponds to a grid size of 
12x12 cells. The historical period from 1995 to 

2014 was chosen as the base period, while the 
future change period spanned from 2080 to 
2099, considering the SSP585 scenario for 
analyzing the warming future. 

The evaluation process involved comparing the 
differences between the reference model and 
the test models in both the historical period and 
future scenarios. The bias correction method 
was applied to the test models using the 
historical data from the reference model. The 
results demonstrated that the bias-adjusted 
simulations effectively reduced the biases 
present in the historical period, bringing them 
closer to the reference model. Furthermore, the 
adjusted future projections showed improved 
agreement with the actual future projections of 
the reference model. 

The successful performance of the bias 
correction method in this evaluation, using the 
ISIMIP3 bias correction approach, provided 
increased confidence in the bias-adjusted 
downscaling outputs. This evaluation process 
contributes to reducing uncertainties associated 
with the bias adjustment procedure and 
enhances the reliability of the projections for the 
impact assessment and decision-making 
processes.

 



 

Table 9.9: CMIP6 model information for the bias adjustment tests 

Category CMIP6 model ensemble ID historical period SSP585 period 

reference model MPI-ESM1-2-HR r1i1p1f1 1850-2014 2015-2100 

test model ACCESS-CM2 r1i1p1f1 1850-2014 2015-2100 

test model EC-Earth3 r1i1p1f1 1850-2014 2015-2100 

test model MIROC6 r1i1p1f1 1850-2014 2015-2100 

test model NorESM2-MM r1i1p1f1 1850-2014 2015-2100 

9.11.1 Evaluation for the mean climatology  

The WMC domain-averaged climatology for 
surface wind speed (sfcWind) from individual 
models was adjusted to match the reference 
model during the historical period, as shown in 
Figure 9.51d. The bias adjustment process 
aimed to correct the discrepancies between the 
individual models and the reference model. By 
applying the bias adjustment, the future 
projections of sfcWind from the test models 
became more aligned with the future projections 
of the reference model, as depicted in Figure 
9.51d. 
 
It is important to note that the specific 
adjustments for each model depended on the 
biases observed in the historical period. In the 
case of MIROC6, this model exhibited an 
underestimation of sfcWind compared to the 

reference model during the historical period. 
Consequently, the bias-adjusted future sfcWind 
in MIROC6 was shifted upwards from the raw 
climatology (green), bringing it closer to the 
actual future projections of the reference model 
(black). Furthermore, the bias-adjusted 
simulations demonstrated a significant 
preservation of the future changes of individual 
models, as illustrated in Figure 9.51f. This 
indicates that the bias adjustment process 
successfully retained the essential 
characteristics of the future changes projected 
by the models while reducing systematic biases. 
 
Overall, the bias adjustment procedure 
effectively improved the realism and accuracy of 
the sfcWind projections from the test models, 
aligning them more closely with the reference 
model.

 



 

 

Figure 9.51: WMC domain averaged sfcWind in the historical period (a,d). Raw model outputs are in a. Bias 
corrected model outputs are in d. WMC domain averaged sfcWind in the future period (b,d). Raw model outputs 
are in b. Bias corrected model outputs are in d. WMC domain averaged sfcWind changes (2080-2099 minus 
1995-2014) (c,f). Raw model outputs are in c. Bias corrected model outputs are in f. 
 

9.11.2 Evaluation for the spatial pattern  

The spatial pattern analysis of surface wind 
speed (sfcWind) in the WMC domain revealed 
certain characteristics for the month of July. 
Specifically, the central land area of the WMC 
tended to have lower wind speeds, while higher 
wind speeds were observed over the open 
ocean area, as depicted in Figure 9.52. This 
spatial distribution of wind speed is indicative of 
the prevailing atmospheric circulation patterns 
during that month. 

Considering the future projections under 
warming from the reference model, a distinct 
change in the spatial pattern of sfcWind was 
observed. The reference model projected 
reduced sfcWind in the northern part of the 
WMC, indicating a weakening of wind speeds in 
that region. Conversely, enhanced sfcWind was 
projected near the equator, suggesting an 
increase in wind speeds in that area due to the 
influence of climate change, as illustrated in 
Figure 9.52. 



 

This spatial pattern analysis provides insights 
into the potential changes in wind patterns and 
intensities within the WMC region under future 
warming scenarios. It demonstrates that the 
reference model's projections capture the 

expected shifts in wind speed distribution, 
allowing for a better understanding of the 
potential impacts of climate change on wind 
patterns in the WMC domain.

 

Figure 9.52: a. WMC domain sfcWind (July) in the historical period of the reference model (MPI-ESM1-2-HR). 
b. Future changes in WMC domain sfcWind projected by the reference model. 
 

During the historical period, the four test models 
(including ACCESS-CM2) generally exhibit a 
similar spatial pattern of surface wind speed 
(sfcWind) compared to the reference model, 
with some variations in magnitude. In the case 
of ACCESS-CM2, it tends to overestimate 
sfcWind in the central WMC region, as illustrated 
in Figure 9.53. 

To address the overestimation issue and 
improve the agreement with the reference 
model, bias adjustment was applied to the 
sfcWind simulations from ACCESS-CM2. The 

bias-adjusted sfcWind values demonstrate a 
better match with the reference model, 
indicating that the adjustment successfully 
mitigated the overestimation bias in the central 
WMC region. The comparison between raw and 
bias-adjusted sfcWind highlights the 
effectiveness of the bias adjustment method in 
reducing discrepancies and improving the 
agreement with the reference model. By 
correcting the systematic biases in the sfcWind 
simulations, the bias-adjusted results provide a 
more reliable representation of the historical 
wind patterns in the WMC domain.

 

 

Figure 9.53: a. WMC domain sfcWind (July) in the historical period of raw test model (ACCESS-CM2). b. bias-
adjusted test model.  

 



 

In terms of the future changes in July surface 
wind speed (sfcWind) over the WMC, the four 
test models (including ACCESS-CM2) exhibit 
varying patterns. For instance, ACCESS-CM2 
projects an enhanced sfcWind over the 
southeastern WMC region and a reduced 
sfcWind over the northwestern WMC region, as 
depicted in Figure 9.54. 

After applying the bias adjustment to the 
sfcWind simulations from the test models, the 
spatial changes in sfcWind are largely preserved 
in the bias-adjusted results. This means that the 
bias adjustment process did not significantly 
alter the projected spatial pattern of sfcWind 

changes. The bias-adjusted simulations still 
reflect the enhanced sfcWind over the 
southeastern WMC and reduced sfcWind over 
the northwestern WMC, in line with the original 
model projections. 

This preservation of the spatial changes in 
sfcWind after bias adjustment provides 
additional confidence in the reliability of the bias-
adjusted simulations for assessing future wind 
patterns over the WMC. It suggests that the bias 
adjustment method successfully corrected the 
systematic biases in the models without 
introducing substantial distortions to the 
projected changes. 

 

Figure 9.54: a. future changes in WMC domain sfcWind projected by raw the test model (ACCESS-CM2). b. 
bias-adjusted test model. 

 

9.12 Summary 

Our high-resolution regional climate model 
(RCM) simulations, conducted at resolutions of 
8km and 2km, have demonstrated excellent 
performance over the Maritime Continent. 
However, these high-resolution RCMs exhibit 
slight model biases when compared to local 
observations specifically within Singapore. To 
ensure that we provide appropriate simulation 
data for local climate change impact studies, we 
have conducted bias adjustments for several 
key climate variables. These variables include 
tas (near-surface air temperature), tasmax 
(maximum air temperature), tasmin (minimum 
air temperature), pr (precipitation), hurs (relative 
humidity), and sfcWind (surface wind speed). By 
applying bias adjustments to these selected 
variables, we aim to align the RCM simulations 
more closely with the observed local climate 
conditions in Singapore.  

In order to perform bias corrections, it is crucial 
to have gridded observation reference data that 
is specifically tailored to the high-resolution (8km 
and 2km) scale required for Singapore. 
However, finding existing observation products 
at such fine resolutions can be challenging. To 
overcome this limitation, we adopted a two-step 
approach. For rainfall (pr), we utilized data from 
28 long-term rainfall stations to create gridded 
precipitation data at resolutions of 2km and 8km 
using advanced kriging techniques. This allowed 
us to generate gridded precipitation reference 
datasets that closely represent the spatial 
variability of rainfall in Singapore. Evaluations 
conducted on the kriged precipitation data 
demonstrated its suitability as a reference 
dataset, as it exhibited strong consistency with 
the station precipitation data. For other 
variables, such as temperature (tas, tasmax, 
tasmin), relative humidity (hurs), and surface 
wind speed (sfcWind), the number of available 



 

long-term stations was insufficient for directly 
converting them into gridded products. 
Therefore, we used the 25km-resolution ERA5 
reanalysis dataset to drive the 8km and 2km 
resolution RCMs. The output within the 
Singapore domain from the ERA5-RCM 
simulations served as the gridded reanalysis 
reference. Evaluations conducted on the ERA5-
RCM data revealed its suitability as a reference 
dataset, as it demonstrated excellent 
consistency with the available station data 
across Singapore. These gridded reference 
datasets, derived from kriging of station data for 
precipitation and the ERA5-RCM simulations for 
other variables, currently represent the best 
options available for conducting bias corrections 
in our study. If new observation products 
become available at higher resolutions in the 
future, we can update the historical reference 
accordingly in subsequent studies. 

For the bias adjustment process in the V3 study, 
we recognized the need for advanced features 
beyond the straightforward quantile-mapping 
based bias adjustment methods used in V2. 
These new requirements included preserving 
trends, correcting rainfall frequency, and 
customizing distribution fits for each variable, 
among others. To meet these demands, we 
implemented the latest and widely used ISIMIP3 
bias adjustment methods. The results of the bias 
adjustment process demonstrated the 
successful removal of biases in the adjusted 
historical simulations. Additionally, the future 
simulations showed improved realism after the 
adjustments. Importantly, the adjustments were 
able to preserve the future change signals 
present in the raw simulations, ensuring that the 
projected climate changes remained intact. To 
provide further confidence in the reliability of the 
bias adjustments, we conducted pseudo reality 
experiments. In these experiments, we 
designated one model as the reference, with 

known historical and future data. We then 
applied bias adjustments to the other test 
models and assessed the performance and 
added value of the adjustments. The results of 
these tests revealed that the simulations after 
bias adjustments were more realistic compared 
to the raw simulations. By incorporating the 
advanced features and conducting rigorous 
evaluations, the bias adjustments performed in 
the V3 study produced more reliable and 
accurate climate simulations. These adjusted 
simulations provide greater confidence in their 
use for assessing climate change impacts in 
Singapore. 

In addition to the main climate variables, we 
derived key extreme indices based on certain 
variables to assess the characteristics of 
extreme events. For example, we calculated the 
maximum consecutive wet days (CWD) using 
the precipitation (pr) data and the number of 
very heavy precipitation days (R20mm). Our 
findings indicate that these frequency-based 
indices (CWD and R20mm) calculated using the 
raw simulations exhibited biases. However, after 
applying the bias adjustments, the biases in the 
CWD and R20mm based on the adjusted 
simulations were largely removed. This 
demonstrates the effectiveness of the bias 
adjustments in improving the accuracy of 
extreme indices. 

In conclusion, the bias adjustments conducted in 
our study have demonstrated very good 
performance. We consider bias adjustment to be 
a crucial step in the post-processing of regional 
downscaling simulations, as it significantly 
improves the realism and accuracy of the 
regional climate model (RCM) outputs. The 
successful implementation of bias adjustments 
enhances our confidence in the climate 
projections and their suitability for assessing and 
addressing the impacts of climate change in 
Singapore.
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