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7.1 Introduction 

This chapter presents the evaluation of the 8km 
and 2km dynamically downscaled historical 
simulations against observations (both in-situ and 
remotely sensed) and reanalysis (gridded proxy 
for observations) data. Six CMIP6 GCMs have 
been dynamically downscaled to 8 km resolution 
for the historical period (1955-2014), and five out 
of the six 8km downscaled simulations have been 
further downscaled to 2 km resolution for the 
period 1995-2014. For details on the downscaled 
simulations please refer to Chapter 6. 

As a part of the evaluation of the dynamically 
downscaled historical simulations we present the 
assessment of: 

(1) Large-scale consistency between the driving 
GCM and the resulting downscaled simulations - 
as a result of dynamical downscaling, although we 
expect the downscaled simulations to capture the 
finer spatial scale features of rainfall, temperature, 
etc. due to improved representation of coastlines, 
mountains and land-use-land-cover we also 
expect the simulations to have large-scale 
consistency with the driving GCM. 

(2) Regional (Southeast Asia and Western 
Maritime Continent) and local (Singapore) 
climatology (rainfall, temperature, humidity and 
winds) – it is important to know which aspects of 
the regional and local climatology are captured 
well in the downscaled simulations and which 
aspects are not in order to use the future 
projections in a more informed manner both for 
physical climate change assessment and climate 
impacts modeling. 

(3) Key regional climate drivers (northeast 
monsoon surges and ENSO teleconnections) – 

evaluation of the underlying regional climate 
drivers helps us understand the reasons behind 
projected changes in climate variables (rainfall, 
temperature, humidity and winds). 

In addition to the above mentioned aspects of 
evaluation, we have also analyzed and presented 
in this chapter the added value of downscaling 
(reduction in biases as compared to the coarse 
resolution driving GCM). While the key results 
from the evaluation of downscaled simulations 
have been presented in this chapter, more details 
can be found in the Appendix.  
 

7.2 Data and Methodology 

Various observational and reanalysis datasets 
have been used for evaluating the V3 downscaled 
model simulations at 8km and 2km resolutions. 
Even for a single variable we use multiple 
observational and reanalysis datasets to evaluate 
the downscaled simulations to account for 
uncertainties amongst datasets and to make a fair 
comparison. 

We have used both gridded datasets based on in-
situ and remotely sensed data and station 
observations from Singapore to validate the 
downscaled simulations. We utilize the latest 
iteration of the PERSIANN CCS CDR precipitation 
datasets for monthly precipitation analysis, 
benefiting from its superior spatio-temporal 
resolution. In the case of diurnal precipitation 
analysis, we rely on the IMERG dataset due to its 
exceptional temporal resolution. The gridded and 
station datasets used for evaluation have been 
shown in Table 7.1 and briefly described in the 
subsections below.

 
 
 
 
 
 
 
 
 
 
 
 



 

 

Table 7.1: Details of observational and reanalysis data products used for evaluation in this chapter, their climate fields used, 
and reference. The abbreviation pr refers to precipitation; TAS: surface air temperature; PSL: mean sea level pressure; SST: 
sea surface temperature; HUSS: specific humidity 
 

NAME FIELDS (resol./freq.) REFERENCES 
HadCRUT4 TAS (5°x5°, monthly) Morice et al. 2012 

BEST TAS (1°x1°, monthly) Rohde and Hausfather, 2020 

FROGs PR (1°x1°, daily) Roca et al. 2019 

IMERG V06 PR (0.1°x0.1°, 30 mins) Huffman et al., 2019 

TRMM 3B42 PR (0.25°x0.25°, 3 hours) Huffman et al., 2007 

PERSIANN_CDR PR (0.25°x0.25°, sub-daily) Ashouri et al., 2015 

CMORPH_v1 PR (0.25°x0.25°, 3 hours) Xie et al., 2017 

ERA5 reanalysis SST, TAS, HUSS, PSL, 
WINDS (0.25°x0.25°, hourly) 

Hersbach et al. 2020 

MERRA2 reanalysis SST, TAS, HUSS, PSL, 
WINDS (0.5° x 0.625°, daily) 

Gelaro et al. 2017 

JRA55 reanalysis 
  
 

SST, TAS, HUSS, PSL, 
WINDS (0.56°x0.56°, 
 sub-daily, monthly) 

Kobayashi et al. 2015 

 

7.3 Assessment of large-scale 
consistency between GCM and 
RCM 

We assess large-scale consistency between the 
driving model (either ERA5 data or CMIP6 GCMs 
data for the 8 km downscaling, and 8 km data for 
the 2 km downscaling) and the downscaler to 
assess the degree of deviations in the domain 
mean (SEA domain for 8 km, and WMC domain 
for 2 km) fields (precipitation, temperature and 
relative humidity). 

Figure 7.1 shows the annual mean time series of 
precipitation and temperature across Southeast 
Asia in driving CMIP6 GCM models, and the 8 km 
downscaled SINGV RCM simulations during 
historical and SSP5-8.5 scenarios.  When 
compared to the ERA5 during the historical 
period, the downscaled RCM simulations 
overestimate the mean precipitation and 
temperature. The downscaled ACCESS-CM2 
simulations captures the interannual variability of 
the mean precipitation but overestimates the 
magnitude compared to the driving GCM 
(ACCESS-CM2). Whereas the time series of 
mean temperatures in the downscaled 
simulations closely matches with the driving 
model (ACCESS-CM2). The EC-EARTH3, 
downscaled simulations can capture the 
interannual variations of the mean precipitation 
and mean temperatures but overestimates the 

magnitude of precipitation and temperature, 
respectively. The MIROC6 model downscaled 
simulations can capture the interannual variations 
with an over estimation of the mean precipitation 
magnitude. Whereas the mean temperature 
variations and magnitude matches the driving 
model (MIROC6).   

Similar to the MIROC6 and ACCESS-CM2 
models, the downscaled simulations of MPI-
ESM1-2HR and UKEESM1-0-LL models can 
capture interannual variability of mean 
precipitation with a slight overestimation of its 
magnitude. In contrast, the mean temperature 
variations and magnitude in downscaled 
simulation matches with the respective driving 
models. The NorESM2-MM downscaled 
simulations also capture interannual variability in 
the mean precipitation but largely overestimates 
the magnitude of the mean precipitation by about 
30%. The interannual temperature variations of 
downscaled NorESM2-MM model matches with 
the driving model with an overestimation of the 
magnitude.  

The downscaled simulations from SINGV are 
broadly consistent with the driving GCMs. The 8 
km downscaled models' climate may have a 
greater potential for strong convection, which 
would increase the rate of precipitation compared 
to the driving GCM models. Most of the 
downscaled simulations can capture the 
interannual variability of temperature and 
precipitation but show a systematic wet bias.  



 
Figure 7.1: Annual mean time series of precipitation (left column) and near-surface air temperature (right column) from driving 
CMIP6 GCMs (150km; black) and V3 downscaled simulations (8km; red) for historical (1980-2014) and SSP5-8.5 scenario 
(2015-2099) for SEA region. First row shows the ERA5 reanalysis at its original resolution (25km) and from its corresponding 
V3 downscaled simulation (8km). 



Figure 7.2 shows the annual mean time series of 
precipitation and temperature across Western 
Maritime Continent (WMC) from 8 km and 2 km 
downscaled SINGV simulations during historical 
and SSP5-8.5 scenarios. During the historical 
period (1995-2014) using ERA5 data, the 
interannual variations and magnitude of annual 
mean precipitation and temperatures from the 8 
km simulations closely matches with the 2 km 
SINGV simulations. The 2 km downscaled time 
series of temperature and precipitation of 
ACCESS-CM2, MPI-ESM1-2HR and UKESM1-0-
LL models closely aligns (matches the interannual 
variability and magnitude) with the 8 km 
downscaled simulations. The 2 km downscaled 
simulations of NorESM2-MM and EC-EARTH3 

models captures the interannual variability of 
temperature and precipitation similar to that of the 
8 km downscaled simulations but overestimates 
the magnitude of the precipitation slightly higher in 
the NorESM2-MM.  

Overall, the 8 km SINGV downscaled large-scale 
mean climate of different driving GCM models 
matches with the 2 km SINGV downscaled fields 
across the WMC region both in historical and 
SSP8.5 scenarios. We might notice some spatial 
(local) changes between the 2 km and 8 km 
downscaled simulated fields compared to the 
domain averaged quantities due to better 
representation of the topographic features in 2 km 
resolution. 

 



 

 

 

Figure 7.2: Annual mean time series of precipitation (left column) and near-surface air temperature (right column) 
from V3 downscaled simulations (8 km in blue and 2km in red) for historical (1995-2014) and SSP5-8.5 scenario 
(2040-2059 and 2080-2099) for WMC region. In the first row, the ERA5 downscaled simulations are shown at 8km 
and 2km resolutions for precipitation (left) and temperature (right).  



7.4 Evaluation of Regional-scale 
climatology 
 
This section will provide an analysis of mean and 
extreme rainfall and temperature as well as 
relative humidity and surface winds simulated by 
SINGV-RCM. 
 

7.4.1 Mean Rainfall 

Figure 7.3a shows that the region generally 
receives rainfall throughout the domain. Figure 

7.3b and d show that relative to PCCSCDR 
(Sadeghi et al., 2021), SINGV-ERA5 enhances 
precipitation over areas with significant 
topography, such as the Sumatran Mountain 
range, Peninsular Malaysia, Borneo, Sulawesi, 
New Guinea, and Vietnam. Concurrently, there is 
a reduction of rainfall over land areas near these 
regions of high topography, such as east Sumatra 
and west Borneo. Near the east and west 
boundaries, there is an enhancement of rainfall 
over the wetter regions in climatology. 

 

 
Figure 7.3: Annual mean precipitation (shaded) in (a) PCCSCDR, (b) ERA5 downscaled by SINGV (SINGV-ERA5) (c) 
Multimodel mean of downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-ERA5 (i.e. b -a), 
while (e) shows the bias in SINGV-MMM (i.e. c-a). 

 

In DJF, the rainband shifts south of the equator, 
with Java, Borneo and New Guinea receiving 
more rainfall and Indochina being relatively dry 
(Figure 7.4a). Similar to the annual mean, there is 
an enhancement of precipitation over areas with 
significant topography and a reduction of 
precipitation in nearby areas in the downscaled 
simulation (Fig. 7.4b, d). There is also increased 
rainfall at the boundaries. SINGV-MMM shares 
qualitative features with SINGV-ERA5. Relative to 
SINGV-ERA5, SINGV-MMM simulates less 
rainfall west of Thailand and east of the 
Philippines, and increased rainfall over the Java 
sea (Fig. 7.4d, e). A comparison of land rainfall 
simulated by downscaled CORDEX models 
against GPCC by Tangang et al 2020 (see their 
Fig. 5) also shows a similar moistening in high 
topography regions, with drying seen parts of the 

east coast of Peninsular Malaysia and Sumatra 
and western parts of Borneo.   

The rain band moves north of the equator in this 
JJA season, with a notable rainfall peak falling on 
the west coast of Indochina and the Philippines 
(Figure 7.5a). The enhanced rainfall over regions 
with high topography described in the annual 
mean can be seen in JJA as well (Figure 7.5b, d), 
such as over the west coast of Thailand and along 
Borneo, Sulawesi and New Guinea. In SINGV-
MMM (relative to PCCSCDR) (Figure 7.5c, e) 
there is an enhancement of rainfall east of the 
Philippines and around Java, and reduced 
precipitation west of Myanmar. The increased 
rainfall on the west edge of Indochina is seen in 
downscaled CORDEX models relative to GPCC 
(Tangang et al 2020).



 

 

 
Figure 7.4: DJF mean precipitation (shaded) in (a) PCCSCDR, (b) ERA5 downscaled by SINGV (SINGV-ERA5) (c) Multimodel 
mean of downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-ERA5 (i.e. b -a), while (e) 
shows the bias in SINGV-MMM (i.e. c-a). 

 

 
Figure 7.5: JJA mean precipitation (shaded) in (a) PCCSCDR, (b) ERA5 downscaled by SINGV (SINGV-ERA5) (c) Multimodel 
mean of downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-ERA5 (i.e. b -a), while (e) 
shows the bias in SINGV-MMM (i.e. c-a). 

 

 

Annual cycle: 
 
The annual cycle of rainfall over the Southeast 
Asia and Western Maritime Continent regions 
varies on monthly scale due to different large-
scale drivers (ENSO, IOD, MJO), local drivers 
(sumatra squalls, northeast monsoon surges, 
Borneo vortex) and seasonal transition of the 
ITCZ. Here, we use the observational data from 
Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Networks 
(PERISANN), and model data from 2 km and 8 km 
downscaled simulations using ERA5 data. Figure 
7.6 shows the area averaged precipitation annual 
cycle over the Southeast Asia (8 km; blue line) 
and Western Maritime Continent (8 km & 2 km; 
orange line) using SINGV RCM downscaled 
simulations and PERISANN (black line) over land 
& ocean, land only and ocean only regions 
(shading denotes the spread between models). 



 

 

Over the SEA (Land & Ocean), and SEA (Ocean) 
domains, the 8 km simulation is able to capture 
the observed (PERISANN) annual cycle with peak 
precipitation during July. The SEA land 
precipitation annual cycle in 8 km downscaled 

simulation shows peak precipitation in July which 
is not observed in PERSIANN (peak during May). 
Overall, the land only precipitation annual cycle 
over the SEA is not captured well in the 8 km 
downscaled SINGV simulations. 

  

 
Figure 7.6: Annual cycle of precipitation (mm/day) from downscaled simulations for the historical period (1995-2014) for 
Southeast Asia (8km) and WMC (8km and 2km) for land + ocean, land only and ocean only. For observations, multiple datasets 
were used and are shown in black. The climatological period for observations varies as in Table 1. 

 

 
In the WMC (land & Ocean) domain, the 
precipitation annual cycle in observations varied 
with both the 2 km and 8 km downscaled 
simulations during May and June. The 
downscaled simulations overestimates the 
observed precipitation magnitude in the months 
May to November and underestimates it in the 
months of January to April.  In addition, there is a 
large intermodal difference during the southwest 
monsoon season i.e. July to September. 

In the WMC (land only) domain, the annual cycle 
of precipitation is captured reasonably well by 2 
km and 8 km downscaled simulations but 
underestimates the magnitude (greatly by 8 km 
simulation) compared to observations during 
January to April. The precipitation is 
overestimated in 2 km downscaled simulations 
from May to November compared to observations 
and 8 km simulations.  

In WMC (ocean only), the observed annual 
precipitation cycle is not captured well by the 2 km 
and 8 km downscaled simulations during April and 
May. The precipitation from April to November  is 
overestimated in both the 2 km and 8 km 
downscaled simulations. Also, there is a large 
intermodal difference during the southwest 
monsoon season (JJAS). 

Overall, the mean precipitation annual cycle over 
the SEA region (Land & Ocean, Ocean) from 8 km 
and 2 km downscaled simulations is comparable 
to the observed annual cycle (PERISANN) with a 
difference in magnitude. The Land-only 
precipitation annual cycle over SEA is not 
captured well by the downscaled simulations. The 
WMC region’s annual precipitation cycle using the 
8 km and 2 km downscaled simulations (large 
intermodal spread during the southwest monsoon 
season) vary compared to the observed annual 



 

 

cycle over Land & Ocean and Ocean only 
domains. The WMC region’s observed land only 
precipitation annual cycle is captured by 2 km and 
8 km downscaled simulations with a difference in 
magnitude.  

Diurnal Cycle 

The diurnal cycle of rainfall is an important 
component of rainfall variability in the Maritime 
Continent. We use hourly data from observations 
(IMERG) and model data from 8 km and 2 km 

simulations for evaluating the diurnal cycle of 
rainfall. Figure 7.7 shows the area averaged 
diurnal precipitation cycle over the 2 km WMC 
dynamical downscaling domain, for two seasons 
JJAS(a) and NDJF(b). We see from Figure 7.7a 
that SINGV-RCM 8 km and 2 km with explicit 
representation of convection is able to capture the 
diurnal timing of precipitation over land grid points, 
and the timing matches well with observation 
(IMERG) but the magnitude does not, and this is 
worse in the 2km model, for JJAS season.

 

 
Figure 7.7: Diurnal cycle of Precipitation area averaged over WMC domain for JJAS and NDJF.  a) Ensemble median and 
spread for SINGV-2km and SINGV-8km compared to IMERG-obs (JJAS), b) Ensemble median and spread for SINGV-2km and 
SINGV-8km compared to IMERG-obs (NDJF). Units in mm/hr. Note that Singapore is 8 hours ahead of UTC. The precipitation 
peak is around the late afternoon of Singapore local time. 

 

Blue line for 8 km model runs and Orange line for 
2 km (shades denote the spread among the 
models), however the downscaling to 8 km and 2 
km improves the diurnal timing, we do see the 
added value from 8 km to 2 km, though we see 
improvement in the timing compared to GCM 
(which is not shown here), we do see the intensity 
is more in 8 km compared to IMERG and even 
more intense when we drive 2 km by 8 km output 
for JJAS. 

The results are quite similar for NDJF as well 
(Figure 7.7b). High resolution runs of 2 km have a 

better diurnal peak timing (improvement) 
compared to 8 km run, while the intensity (Land 
grid points only) is over predicted by SINGV-RCM 
for JJAS season (Figure 7.7 a). Whereas the 
SINGV-RCM at 8 km resolution is under predicted 
for NDJF season compared to observation (Figure 
7.7 b), while the 2km resolution corrects it 
(improvement). Figure 7.8 shows the spatial 
variation in the timing of the diurnal rainfall peak 
over the WMC domain compared to GPM-IMERG 
data at each grid point.

 



 

 

 
Figure 7.8: Spatial map of Peak Diurnal timing of Precipitation for JJAS and NDJF. a) Ensemble mean of SINGV-8km (JJAS), 
b) SINGV-8km-ERA (JJAS) c) Ensemble mean of SINGV-2km (JJAS), d) SINGV-2km-ERA (JJAS), e) IMERG-obs (JJAS). f) 
Ensemble mean of SINGV-8km (NDJF), g) SINGV-8km-ERA (JJAS), h) Ensemble mean of SINGV-2km (NDJF), i) SINGV-2km-
ERA (JJAS), j) IMERG-obs (NDJF). Units in hour (SGT). 

 

The spatial variation in timing of the peak rainfall 
for this region: earlier times over land seem largely 
tied to the higher orography while over much of 
the lower orography the peak occurs 
overnight/early morning (Based on Singapore 
local time), hence the second peak in Fig. 7.7b. 
There is also a later peak along the Sumatran 
coast and an earlier peak over and beyond the 
islands off the coast. The models do seem to 
capture this spatial variation. 

7.4.2 Rainfall Extremes 

Here we used the annual maximum 1-day 
precipitation (RX1day) to evaluate RCM’s fidelity 
simulating the rainfall extremes. Based on the 
evaluation (Figure 7.9), it is observed that both 
SINGV-ERA5 and SINGV-MMM models tend to 
overestimate RX1day across the Southeast Asia 
(SEA) domain. This overestimation is consistent 
with the overestimation of the annual mean rainfall 
in these models. 

 

 
Figure 7.9: Annual RX1day in (a) PCCSCDR, (b) ERA5 downscaled by SINGV (SINGV-ERA5) (c) Multimodel mean of 
downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-ERA5 (i.e. b -a), while (e) shows the 
bias in SINGV-MMM (i.e. c-a). 

 



It suggests that there might be a common bias in 
the representation of precipitation processes in 
these models, leading to an overestimation of both 
mean rainfall and extreme precipitation events. 
Specifically, the overestimation of RX1day is more 
prominent in the equatorial SEA region, while the 
biases in the extratropical region are relatively 
smaller. This spatial pattern of biases suggests 
that there may be certain factors or processes 
specific to the equatorial region that contribute to 
the overestimation of extreme rainfall events. 
These results can help identify areas where 
improvements are needed in the representation of 
precipitation processes in the RCMs, particularly 
in capturing the characteristics of extreme rainfall 
events in the equatorial SEA region. 
 

7.4.3 Mean Temperature 

Figure 7.10 shows the annual cycle of mean 
temperature over the SEA and WMC regions from 
HadCRUT observations (black line), 8 km (blue 
line), and 2 km (orange line) downscaled 
simulations for the historical period. The annual 

cycle of temperature in the SEA and WMC regions 
vary across months over land & ocean, land only, 
and ocean-only domains.  

Over the SEA (Land & Ocean) domain, the annual 
cycle has a bimodal distribution with peak 
temperatures in May and October. The 8 km 
downscaled simulations are able to capture the 
observed annual cycle with a slight 
underestimation of temperatures during Jan-Apr, 
and Sep-Dec.  

Over the SEA (land only) domain, the observed 
annual cycle has bimodal distribution with peak 
temperatures during May and October. The 8 km 
downscaled simulations can capture one of the 
peaks during May but cannot capture the other 
one. The temperatures are significantly 
underestimated by about 2oC over SEA land in 
the downscaled simulations. The cold biases are 
observed in 8km-downscaled simulations similar 
to the cold biases in the GCMs over the Indochina 
region (section 5.3.1 Figure 5.2). Over SEA 
(ocean only), the observed annual cycle of 
temperature is captured well by the 8 km 
downscaled simulations. 

 

 
Figure 7.10: Annual cycle of temperature (deg C) from downscaled simulations for the historical period (1995-2014) for 
Southeast Asia (8km) and WMC (2km) for land+ocean, land only, and ocean only. For observations, HadCRUT is used for 1995-
2014. 

 



The observed mean annual cycle of temperature 
over the WMC region (Land & Ocean) has 
bimodal distribution with peak temperatures 
during May and October. The 8 km and 2 km 
downscaled simulations are able to capture the 
annual cycle but slightly overestimate the 
magnitude. 

Over the WMC (Land only) domain, both the 8 km 
and 2 km simulations are able to capture the 
observed annual cycle with a slight 
underestimation of the magnitude. The WMC 
(ocean only) observed temperatures show 
bimodal distribution with peaks during May and 
October. Both the 8 km and 2 km downscaled 
simulations are able to capture the annual cycle 
but slightly overestimate the magnitude. 

The historical annual temperature cycle over the 
SEA and WMC regions is captured reasonably 
well by 2 km and 8 km downscaled simulations. 
The 8 km downscaled simulations significantly 

underestimate the temperatures over the SEA 
(Land only) domain. 
 

7.4.4 Temperature Extremes 

The extreme temperatures are measured using 
the annual (or monthly) maximum of daily 
maximum surface temperatures (TXx). Figure 
7.11 shows the TXx over the SEA land regions in 
ERA5 land (a), ERA5 downscaled SINGV (b), and 
Multimodel mean of the downscaled GCM 
simulations (c). As seen in the Fig. 7.11(d, e), both 
the ERA5 downscaled simulations and multimodel 
mean of downscaled simulations overestimate the 
TXx temperatures across most of the SEA nations 
(underestimate over New Guinea) with a higher 
magnitude of differences in GCM downscaled 
simulations (7.11d). Overall, the SINGV 
downscaled model simulations can capture the 
spatial pattern of historical extreme temperatures 
over the SEA nations with a difference in the 
magnitude of temperatures.  

 
Figure 7.11: Annual TXx in (a) ERA5 Land (b) ERA5 downscaled by SINGV (SINGV-ERA5) (c) Multimodel mean of downscaled 
GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-ERA5 (i.e. b -a), while (e) shows the bias in SINGV-
MMM (i.e. c-a). 

 

7.4.5 Relative Humidity 

Humidity is a measure of the water vapor 
concentration in air. Relative humidity is 
expressed as a percentage, which measures the 
amount of water vapor in the air relative to the 
maximum amount the air can hold at a given 
temperature and pressure. Figure 7.12 shows the 
annual cycle of Relative humidity (RH) across the 
SEA and WMC regions from observations 

(ERA5), and downscaled simulations (2 km and 8 
km) during the historical period.  

Over the SEA (Land & ocean) domain, the 8 km 
downscaled simulations of different driving GCM 
models can capture the observed annual 
variations of RH (maximum values during the 
southwest monsoon season) but underestimate 
RH magnitude. The SEA (land only), the 8 km 
downscaled simulations can capture the observed 



 

 

annual cycle but significantly underestimate RH 
magnitude by about 4% compared to ERA5. The 
SEA (ocean only), 8 km downscaled annual cycle 

matches the observed annual cycle with an 
underestimation of the magnitude.  

 

 
Figure 7.12: Annual cycle of relative humidity from downscaled simulations for the historical period  (1995-2014) for Southeast 
Asia (8km) and WMC (8km + 2km) for land+ocean, land only, and ocean only. For observations, ERA5 data is used for 1995-
2014. 

 

Over the WMC (Land & Ocean), the 2 km 
downscaled model simulations match better with 
the RH in ERA5 compared to the 8 km 
downscaled simulations. For the historical RH 
annual cycle, the 2 km downscaled simulations 
also capture it but slightly underestimate during 
January to April and overestimate during April to 
November. 

The WMC (Land only) 8 km and 2 km downscaled 
simulations can capture the historical RH annual 
cycle. The 8 km downscaled simulations 
significantly underestimate the magnitude and 2 
km simulations slightly overestimate. The WMC 
(Ocean only) downscaled simulations (2 km and 8 
km) can capture the annual cycle but slightly 
underestimate compared to the ERA5. Overall, 
the annual cycle of RH is captured in 2 km and 8 
km downscaled SINGV simulations but 
underestimate the RH magnitude (largely by 8 km 
downscaled simulations).  
 

7.4.6 Winds 

Ali et al (2022) evaluated five CORDEX-SEA 
simulations of downscaled wind speed and 
concluded that all models were able to reproduce 
the spatial pattern of wind speed well, but only 
described three models as being able to correctly 
reproduce the wind direction. In a comparison of a 
14-member ensemble simulation, Tangang et al 
(2020) noted that the patterns of bias in the RCM 
were generally similar to those of the parent GCM, 
although the RCM could make modification in 
some cases, such as strong southerlies in the 
eastern Indian Ocean and west of Sumatra. Their 
results also indicate a general strengthening of the 
bias in the downscaled simulations of the 
westerlies over Indochina in JJA. As for DJF, the 
largest biases in the multi-model mean were 
easterly over Indochina and westerly over much 
of Java. 

In JJA (Figure 7.13), the southwesterly flow is 
strongest over the Indian ocean. Downscaling in 
SINGV-ERA5 enhances the westerly flow from the 
Andaman Sea to the Philippines relative to ERA5. 



 

 

This strengthening of the monsoonal flow is 
enhanced for SINGV-MMM, similar to the 
multimodel mean JJA results of Tangang et al 
(2020) and the westerly bias of the 6 CMIP6 
models over part of Indochina (Figure 7A.1). In 
contrast, the southwesterly flow for SINGV-
NorESM2-MM is displaced southwards towards 
Sumatra, while that of MIROC6 is weaker than 
ERA5 (not shown). Martin et al. (2021) have noted 

a similar westerly bias over Indochina in the GC2 
configuration of the Unified Model (UM), on which 
SINGV-RCM is based. Their result, combined with 
the occurrence of this bias even when forced with 
ERA5 at the boundaries (panel d), suggests that 
the bias is inherent in the UM. In addition, because 
SINGV-RCM is run with explicit convection, the 
development of this bias is not solely linked to the 
convection scheme employed by the UM. 

 
Figure 7.13: Mean JJA 850 hPa winds (quivers) and wind speed (shaded) in (a) ERA5, (b) ERA5 downscaled by SINGV (SINGV-
ERA5) (c) Multimodel mean of downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-ERA5 
(i.e. b -a), while (e) shows the bias in SINGV-MMM (i.e. c-a). 
 

In DJF (Figure 7.14), the northeasterly flow 
reaches a peak in wind speed off the south coast 
of Vietnam, and turns southeasterly after crossing 
the equator. Downscaling in SINGV-ERA5 
creates a cyclonic anomaly centered on south 
Vietnam, as well as enhancing the westerlies off 
the east coast of Borneo towards the Celebes 
Sea. Except for SINGV-ACCESS-CM2 (not 
shown), this feature is not particularly apparent in 
the downscaled GCMs and SINGV-MMM. 
Instead, the flow in SINGV-MMM is more northerly 

over the South China Sea along the east coast of 
the Malay Peninsula and towards Singapore.  The 
downscaled simulations show small or 
northeasterly bias over Indochina, and a spread of 
wind bias over Java (not shown), which differ from 
the CMIP5 CORDEX-SEA downscaling findings 
of Tangang et al (2020) described above. A 
northeasterly bias in parts of Indochina can be 
seen in the multimodel mean of the 6 GCMs used 
for downscaling (Figure 7A.2). 

 



 

 

 
Figure 7.14: Mean DJF 850 hPa winds (quivers) and wind speed (shaded) in (a) ERA5, (b) ERA5 downscaled by SINGV 
(SINGV-ERA5) (c) Multimodel mean of downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-
ERA5 (i.e. b -a), while (e) shows the bias in SINGV-MMM (i.e. c-a). 
 

 

7.5 Evaluation of regional climate 
drivers 

The biases in the simulation of climate variables 
are associated with simulation biases of the key 
climate drivers. In this subchapter we show the 
biases in the simulation of three important climate 
drivers - northeast monsoon surges, ENSO 
teleconnections, and weather regimes.  
 

7.5.1 Monsoon 

Monsoons have a key role in shaping the weather 
and climate of the MC domain. The MC domain is 
affected by the boreal summer (JJA) monsoon as 

well as the boreal winter (DJF) monsoon. 
Seasonal migration of ITCZ leads to climatological 
rainfall peaks during the monsoon season in 
Northern and Southern hemispheres.  

Figure 7.15 (top left panel) shows the observed 
(based on PERSIANN-CCS data) migration of 
monsoon rainfall for the 1995-2014 period with 
northern hemisphere (NH) peaks during JJAS and 
southern hemisphere (SH) peaks in DJFM. Note 
the more persistent wet all year around in the 
equatorial region. Also, there is north-south 
asymmetry across the equator, with the NH 
monsoon extends further north compared to the 
SH monsoon extension southward.  

 

 



 

 

 
Figure 7.15: The time-latitudinal progression of zonally-averaged (80-160E) climatological monthly precipitation (i.e. passage 
of the ITCZ-monsoon rain belt) for the period 1995-2014 in high-resolution satellite observations (PERSIANN-CCS; regridded 
to 8-km) and in SINGV-RCM 8-km downscaled simulations of ERA5 and the six sub-selected GCMs (ACCESS-CM2, EC-Earth3, 
MIROC6, MPI-ESM1-2-HR, NorESM2-MM and UKESM1-0-LL). The multi-model ensemble mean (ENSMEAN) of the six 
downscaled GCMs is shown in the top right panel. Biases in the SINGV-ERA5 and ENSMEAN progression of the ITCZ rain belt 
are shown in the second row. 

 

Compared to the observation reference, SINGV-
ERA5 (Figure 7.15 middle panel in the 1st and 2nd 
rows) shows that overestimated rainfall in the NH 
(~15N) during the summer monsoon season 
(JJAS) and also overestimated rainfall in the SH 

(~8S) during the winter monsoon season. 
Multimodel mean of SINGV-RCM (SINGV-MMM) 
shows similar biases of overestimated monsoon 
rainfall as the SINGV-ERA5. Within the equatorial 
region, SINGV-RCMs tend to show a larger bias 



 

 

compared to the SINGV-ERA5. Six RCMs overall 
show reasonably realistic monsoon rainfall across 
the year, but we do observe model diversity 
(Figure 7.15 lower panels), e.g., EC-Earth3 
appears to have a much stronger summer 
monsoon rainfall while MIROC6 has weaker 
summer rainfall compared to other models. 

Similar to significant positive bias of precipitation 
in a latitude band of 10-20N observed in GCM-
MMM (Fig.5.14), the downscaled simulations of 
SINGV-RCM (8km) also show significant positive 
precipitation bias around the similar latitudinal 
band (Fig. 7.15) 
 

7.5.2 Northeast Monsoon surge 

Figure 7.16 shows the spatial pattern of mean 
rainfall and 850hPa winds composited over surge 
days (as defined in Chapter 7) for the period 1995-
2014 from observations/reanalysis and 
downscaled 8 km simulations. Also shown are the 
corresponding biases. The reference (Fig. 7.16a) 
shows northeasterly winds over the South China 
Sea characteristic of surge days. After crossing 
the equator, the winds turn northwesterly. In the 
process, these winds bring heavy rainfall to the 
Maritime Continent, especially over the 
Philippines and Borneo. 

Figures 7.16b and d show that SINGV-ERA5 is 
able to capture the wind features, with increased 
precipitation over the Java Sea, Sulawesi, and 
New Guinea, as well as the Indian ocean, and an 
eastward shift of the precipitation peak over 
Borneo. There are anomalous winds directed 
eastward from Borneo, as well as anticyclonic 
winds around Myanmar. 

In SINGV-MMM (Figures. 7.16c and e; computed 
from the multi-model mean of the 6 downscaled 8 
km simulations), there is a southward shift of 
precipitation, with strong precipitation over the 
Indian ocean and east of Borneo.  Similar to GCM 
bias (Fig. 5.24c) we observe dry bias over 
Philippines and wet bias over Sulawesi in the 
downscaled SINGV-MMM (Fig.7.16e). 

The surge frequency of the reference (not shown) 
is 19% which matches that of SINGV-ERA5 
(19%). Other than MIROC6 (12%), the 
downscaled models have surge frequencies 
ranging from 15% in ACCESS-CM2 to 20% in 
UKESM1-0-LL, with a multi-model mean of 17%. 
This is consistent with the driving GCMs, where 
GCMs generally had lower surge frequencies as 
compared to reanalysis. 

 

 
Figure 7.16: Mean 850 hPa winds (quivers) and rainfall (shaded) composited over surge-days in (a) REF (surge days and surge 
winds derived with ERA5 winds and sea level pressure, and using PERSIANN-CCS-CDR rainfall), (b) ERA5 downscaled by 
SINGV (SINGV-ERA5) (c) Multimodel mean of downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in 
SINGV-ERA5 (i.e. b -a), while (e) shows the bias in SINGV-MMM (i.e. c-a). The reference and model datasets have different 
resolutions, so we use the lower of the two resolutions. For surge days and wind composites, this is 25km following the resolution 
of ERA5. For rainfall, values are computed at 8km resolution (following that of SINGV-RCM). 
 



7.5.3 ENSO Teleconnections 
 
Evaluation of the simulation of ENSO-rainfall 
teleconnection is proposed as one of the metrics 
to test the fidelity of RCMs (Torres-Alavez et al. 
2021). The main goals of this evaluation are to 
assess: 1. whether RCMs and driving GCMs 
reproduce the observed large scale ENSO 
teleconnection patterns; 2. whether the ENSO 
signal propagates correctly from the driving GCMs 
to the RCMs; 3. whether the higher resolution of 
RCMs can improve the ENSO teleconnection in 
certain parts of the domain.  

Here we analyze ENSO teleconnection over the 
Maritime Continent in the historical period (1995-
2014) in all seasons. The observation reference is 
calculated using 8 km resolution PERSIANN-
CCS-CDR monthly rainfall and HadISST Nino3.4 
index. For the JJA season, the observed 
teleconnection shows negative rainfall variability 
induced by El Nino near the central/western MC 
while positive rainfall variability near the western 
Pacific and Northern MC (Figure 7.17a). We 
calculate ENSO-rainfall teleconnection in the 
RCM using RCM rainfall and Nino3.4 index from 
the corresponding driving GCM. The comparison 
shows that RCMs are able to reproduce 
consistent spatial patterns as the corresponding 
driving GCMs (Figure 7.17). 

We further calculate two measures to compare 
teleconnection in RCMs and GCMs to the 
observation: 1. RMSE between spatial patterns of 
the teleconnection, 2. Correlation coefficient 
(corrcoeff) between spatial patterns. The results 
show that RCMs have similar RMSE as their 
corresponding driving GCMs (Figure 7.18).  

RCMs have slightly lower spatial agreement with 
the observation compared to the driving GCMs 
(Figure 7.19). Across the season, RCMs have 
lower RMSE but similar corrcoeff to GCMs in MJJ 
and higher RMSE, lower corrcoeff for most of the 
rest of the year. The corrcoeff in RCMs is 
generally lower in April-July than in the other 
months. Note that it is difficult to identify the 
origins of detailed differences between GCMs and 
RCMs given multiple possible causes, such as 
spatial resolution, different physics schemes, etc. 

 
 
Figure 7.17: JJA ENSO-rainfall teleconnection  over the 
Maritime Continent using correlation [corr (N34, pr)]. a. 8km 
resolution observation using TS_HadISST and  
PR_PCCSCDR. b-g. 8km resolution RCMs. h-m. GCMs 
remapped to 8km to facilitate the visual inspection. 
 

 

 



 

 

 
Figure 7.18: RMSE between the 8km observation and RCMs (a) or GCMs (b) over the MC region as to the ENSO teleconnection 
in the JJA season of the historical period (1995-2014). 

 

 
Figure 7.19: Correlation coefficient between the 8km observation and RCMs (a) or GCMs (b) over the MC region as to the 
ENSO teleconnection in the JJA season of the historical period (1995-2014). 

 

7.6 Evaluation of local-scale 
climatology over Singapore 
 
Assessment of regional scale climatology was 
presented in subchapter 7.4 above, which looked 
at the evaluation of key climate variables over the 
Maritime Continent in the 8 km downscaled 
simulations. In this subchapter we focus on the 
evaluation of 2 km downscaled simulations over 
Singapore. We have also carried out evaluation of 
the 8 km simulations over Singapore, but since the 
2 km simulations are the primary dataset for the 
climate change projections over Singapore 

presented in Chapter 10, we present the 
evaluation of the 2 km historical simulations in this 
chapter. 
 

7.6.1 Mean Rainfall 

The annual mean spatial pattern of precipitation 
over Singapore is shown in Figure 7.20. The mean 
precipitation values range from 0-10mm/day. The 
kriged precipitation over the Singapore land grids 
uses 28 observational stations with continuous 
data availability during the analysis period (1995-
2014) Figure 7.20a. Please see Chapter 9 Section 
9.7.1 for more information on the kriged rainfall.  



 

 

The SINGV-RCM simulations at 2 km resolution 
forced by SINGV-RCM 8 km obtained from forcing 
ERA5 reanalysis is shown in Figure 7.20b and the 
multi-model annual pattern of mean precipitation 
simulated using 5 GCMs is shown in Figure 7.20c. 
The bias in the simulated annual mean 
precipitation with respect to station kriged 
precipitation are shown in Figure 7.20d, and e for 
downscaled data using ERA5 and multi-model 
mean, respectively. 

The overall pattern of precipitation over the 
Singapore land grid points are well captured in the 
2km model downscaled using ERA5 and multi-
model mean with respect to the kriged 
precipitation mean. 

The annual mean precipitation bias for ERA5 
downscaled simulation (Figure 7.20d) shows dry 
bias over the central land grids and exhibits dry 
biases over the coastal grids of Singapore. This 
may be due to the fact that the model sees those 
grids as Ocean grid points. Also there is a slight 
overestimation of precipitation over the 
northernmost land grid points. MMM downscaled 
simulations (Figure 7.20e) shows similar low bias 
over the central land grids and exhibit dry biases 
over the coastal grids of Singapore, and we don't 
find the overestimation of precipitation over the 
northernmost land grid points. 

 
Figure 7.20: Annual mean precipitation in (a) Kriging gridded dataset, (b) ERA5 downscaled by SINGV (SINGV-ERA5) (c) 
Multimodel mean of downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-ERA5 (i.e. b -a), 
while (e) shows the bias in SINGV-MMM (i.e. c-a). 

 

7.6.2 Rainfall Extremes 

Extreme precipitation events are defined as the 
annual maximum daily maximum precipitation 
(Rx1day). The Annual RX1day spatial pattern of 
precipitation over Singapore is shown in Figure 
7.21. The Annual RX1day in kriged precipitation 
ranges from 80 to 180 mm. There is a clear east-
west contrast with east being wet and west being 
dry in the station observations Figure 7.21a.  

The Annual RX1day of SINGV-RCM simulations 
at 2 km resolution from ERA5 is shown in figure 
7.21b and the multi-model annual pattern of mean 
precipitation simulated using 5 GCMs is shown in 
Figure 7.21c. 

 

The bias in the simulated Annual RX1day 
precipitation with respect to station kriged 
precipitation are shown in Figures 7.21d and 
7.21e for downscaled using ERA5 and multi-
model mean respectively. The Annual RX1day 
precipitation by 2km model downscaled using 
ERA5 shows upwards of 80mm in the grids over 
North-west of Singapore, while the 2km model 
downscaled using multi-model mean shows wet 
bias upwards of 80mm in grids over central-west 
land points of Singapore with respect to the kriged 
Annual RX1day precipitation. 



 

 
Figure 7.21: Annual RX1day in (a) kriged gridded dataset, (b) ERA5 downscaled by SINGV-RCM (SINGV-ERA5), (c) multimodel 
mean of downscaled GCM simulations with SINGV-RCM (SINGV-MMM). (d) Shows the bias in SINGV-ERA5 (i.e. b -a), while 
(e) shows the bias in SINGV-MMM (i.e. c-a). 

 

7.6.3 Mean Temperature 

The Annual spatial pattern of mean temperature 
over Singapore is shown in Figure 7.22. The mean 
annual temperature values range from 27-29 deg. 
Celsius. 

The SINGV-RCM simulation of annual pattern of 
mean temperature at 2 km resolution forced by 
ERA5 reanalysis is shown in Figure 7.22a and the 
multi-model downscaled annual pattern of 
temperature simulated using 5 GCMs is shown in 
Figure 7.22b.  

The overall pattern of annual Mean Temperatures 
over the Singapore land grid points are well 
captured in the 2km model downscaled using 
ERA5 and multi-model mean, with warm 
temperatures over the Central Business District 
(CBD) regions and cooler temperature over the 
less urbanized areas of North-West and Central 
regions. 

Large warm biases are confined only over the 
coastal grid points and most grid points in the 
urbanized area are within the range of 0.1-0.3 
deg. Celsius as shown in Figure 7.22c.   

7.6.4 Temperature Extremes 

Extreme Temperature events are defined as the 
highest maximum temperature (TXx) of the 
monthly maximum value of daily maximum 
temperature (TX). The Annual TXx spatial pattern 
of Temperature over Singapore is shown in Figure 
7.23. The Annual TXx ranges from 30 to 38 deg. 
Celsius. The warmer temperature grids of above 
36 deg. Celsius covers about 70-80% of 
Singapore land grid points in the ERA5 
downscaled data as shown in Figure 7.23a.  

The Annual TXx of SINGV-RCM simulations at 2 
km resolution from ERA5 is shown in Figure 7.23a 
and the multi-model Annual TXx simulated using 
5 GCMs is shown in Figure 7.23b.   

The bias in the multi-model simulated (MMM) 
Annual TXx with respect to ERA5 downscaled 
data is shown in Figure 7.23c. The warm bias is 
between 1-2 deg. Celsius in the grids confined 
only over the northernmost land points and 
coastal land points of Singapore. 



 
Figure 7.22: Annual mean temperature in (a) ERA5 downscaled by SINGV (SINGV-ERA5) (b) Multimodel mean of downscaled 
GCM simulations with SINGV (SINGV-MMM) and (c) shows the bias in SINGV-MMM relative to SINGV-ERA5 (i.e. b-a). 
 

 
Figure 7.23: Annual TXx in (a) ERA5 downscaled by SINGV (SINGV-ERA5) (b) Multimodel mean of downscaled GCM 
simulations with SINGV (SINGV-MMM) and (c) shows the bias in SINGV-MMM relative to  SINGV-ERA5 (i.e. b-a). 
 

 
Figure 7.24: Annual mean relative humidity in (a) ERA5 downscaled by SINGV (SINGV-ERA5) (b) Multimodel mean of 
downscaled GCM simulations with SINGV (SINGV-MMM). (c) the bias in SINGV-MMM relative to SINGV-ERA5 (i.e. b -a). 

 



7.6.5 Relative Humidity 

The annual mean relative humidity over 
Singapore is shown in Figure 7.24. The mean 
relative values range from 70-90%, which is 
typical of a humid tropical location. 

 The SINGV-RCM simulations at 2 km resolution 
forced by SINGV-RCM 8 km obtained from forcing 
ERA5 reanalysis is shown in Figure 7.24a and the 
multi-model mean  pattern of annual mean relative 
humidity simulated using 5 GCMs is shown in 
Figure 7.24b. The bias in the simulated annual 

mean relative humidity with respect to ERA5 
downscaled  dataset is  shown in Figure 7.24c. 

The annual mean relative humidity bias for MMM 
downscaled simulations (Figure 7.24c) shows 
negative bias over the east and west of central 
land grids and exhibits less biases over the 
southern coastal grids of Singapore. 
 

7.6.6 Winds 

The annual mean wind speed over Singapore is 
shown in Figure 7.25. The annual mean wind 
speed values range from 0-5 m/s. 

 
Figure 7.25: Annual mean wind speed in (a) ERA5 downscaled by SINGV (SINGV-ERA5) (b) Multimodel mean of downscaled 
GCM simulations with SINGV (SINGV-MMM). (c) the bias in SINGV-MMM relative to SINGV-ERA5 (i.e. b -a). 

 
The SINGV-RCM simulations at 2 km resolution 
forced by SINGV-RCM 8 km obtained from forcing 
ERA5 reanalysis is shown in Figure 7.25a and the 
multi-model pattern of annual mean wind speed 
simulated using 5 GCMs is shown in Figure 7.25b. 
The bias in the simulated annual mean wind 
speed with respect to ERA5 downscaled dataset 
is shown in Figure 7.25c. 

The annual mean wind speed bias for MMM 
downscaled simulations (Figure 7.25c) shows 
positive bias over the most of northern coastal grid 
points and exhibits less biases over the land grids 
of Singapore. 
 

 

7.8 Summary 

In summary, the downscaled simulations from 
ERA5 as well as 6 GCMs to 8 km resolution over 
South East Asia have shown added value in each 
variable compared to observations. Though the 2 
km is not statistically different to 8 km over the 
western Maritime continent domain, to balance 
between very high computation costs and to 
benefit from high-resolution climate downscaling, 
we performed 2 km time slice simulations over the 
western Maritime continent domain in the 
historical as well as in the future for certain 
specific agency applications. 

Following are some of the key summary points 
from this study: 



 

 

1. We have clearly shown that there are added 
values in downscaling the coarse resolution 
driving models namely ERA-5 and 6 GCMs to 
8 km and further to 2 km resolution. 

2. We have clearly demonstrated the SINGV-
RCM downscaling is consistent with the parent 
driving model and follows the long-term trends 
and variability of the parent driving model. 

3. In this chapter, we evaluated the downscaled 
simulations of important meteorological 
parameters like precipitation, temperature, 
relative humidity as well as wind speed for 
different time scales of variability from diurnal 
to seasonal and their annual cycles are 
reproduced well in the model. 

4. The important meteorological variables 
simulated by SINGV-RCM are compared with 
the available high-resolution regional 
observations like in situ (ground-based 
stations) and satellite merged products for 
establishing the model’s skill in the historical 
period. 

5. We have also brought out that the model is able 
to capture the regional climate drivers like 
remote teleconnection (ENSO-teleconnection) 
and processes like cold surges over this region 
by performing diagnostics with both 
observational data as well as simulated data. 

6. Finally, the model is also evaluated over 
Singapore land grids using high resolution 
station observations in capturing the climate of 
the city state. 

This chapter has documented the added value 
brought by the dynamical downscaling using 
SINGV-RCM to 8 km and 2 km resolution over 
SEA and WMC domains and the model’s skill in 
capturing the different times scales of variability 
and also its ability to capture different regional 
processes. Further the usefulness of high-
resolution 2km simulation in capturing the climate 
of a city state like Singapore is evident when 
compared with very high-resolution (both 
temporal as well as spatial) insitu station datasets.
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Appendix 
 

 
 
Figure A7.1: Mean JJA 850 hPa winds (quivers) and wind speed (shaded) in (a) ERA5, (b) Mutimodel mean of 49 CMIP6 
models, (c) Multimodel mean of GCMs used in downscaling. (d) shows the bias of the 49 CMIP6 models (i.e. b-a), while (e) 

shows the bias in the GCMs used in downscaling (i.e. c-a). Data in these plots have been regridded to 1.5x1.5 degrees.  
 
 
 

 

Figure A7.2: Mean DJF 850 hPa winds (quivers) and wind speed (shaded) in (a) ERA5, (b) Mutimodel mean of 49 CMIP6 
models, (c) Multimodel mean of GCMs used in downscaling. (d) shows the bias of the 49 CMIP6 models (i.e. b-a), while (e) 
shows the bias in the GCMs used in downscaling (i.e. c-a). Data in these plots have been regridded to 1.5x1.5 degrees.  

 


