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5.1 Introduction 

The Southeast Asia (SEA) region is home to ca. 
8.5% of the global population and is highly 
vulnerable to climate change both due to the 
projected increase in natural hazards and the 
limited adaptive capacity of many of the SEA 
countries. The weather and climate over SEA are 
influenced by many local, regional, and large-
scale processes. Some of the important large 
scale processes include the Asian-Australian 
monsoon system, the Madden Julian Oscillation 
(MJO), El-Nino Southern Oscillation (ENSO), 
Indian Ocean Dipole (IOD), etc. Even within this 
region there is a large variation in the climatic 
conditions both in terms of mean and variability. 

In line with the previous generations of the 
Coupled Model Intercomparison Projects 
(CMIPs), the CMIP6 (Eyring et al, 2016) provides 
us with a coordinated set of climate model 
simulations from climate modelling centres 
around the world. Although global models have 
been known to perform well in providing large 
scale climate information, such as global mean 
temperature and rainfall, the regional and local 
climatic features are more prone to biases. 

According to the Sixth Assessment Report (AR6) 
by the Intergovernmental Panel on Climate 
Change (IPCC) the CMIP6 multi-model mean is 
cooler over the period 1980-2000 than both 
observations and CMIP5 (Bock et al., 2020; Flynn 
and Mauritsen, 2020), and that these biases of 
several tenths of a degree in some CMIP6 models 
could be due to an overestimate in aerosol 
radiative forcing during the period (Andrews et al., 
2020; Dittus et al., 2020; Flynn and Mauritsen, 
2020). 

There have also been studies on regional climate 
using the CMIP6 models. For example, Khadka et 
al. (2021) used model data from CMIP5 and 
CMIP6 to evaluate summer rainfall in Southeast 
Asia. They found CMIP6 models to be superior to 
CMIP5 ones in simulating rainfall and large-scale 
circulation, and attributed it to CMIP6 models’ 
higher spatial resolutions, increased number of 
vertical levels, and improved atmospheric and 
land surface parameterizations. They also 
reported that CMIP6 models are better at 
representing the annual cycle of rainfall but many 

still show dry biases like their predecessors. Many 
of the climate models from both CMIPs were 
reported to show a shorter rainy season due to 
late onset and early retreat. In another relevant 
study Ge et al. (2021) used outputs from 15 
CMIP6 GCMs to estimate projected changes in 
precipitation extremes for SEA at the end of the 
21st century and reported that the projected 
precipitation extremes increase significantly over 
the Indochina Peninsula and the Maritime 
Continent. 

The IPCC AR6 further reports with medium 
confidence that CMIP5 and CMIP6 models 
continue to overestimate observed warming in the 
upper tropical troposphere over the 1979-2014 
period by at least 0.1°C per decade, partly 
because of an overestimation of the tropical SST 
trends during this period. 

Kim et al. (2020) evaluated CMIP6 models for 
their performance in simulating the climate 
extreme indices defined by the Expert Team on 
Climate Change Detection and Indices (ETCCDI) 
and reported that the CMIP6 models generally 
capture the observed global and regional patterns 
of temperature extremes with limited 
improvements compared to the CMIP5 models. 
They also reported that the CMIP6 model skills for 
the precipitation intensity and frequency indices 
are broadly comparable to those of CMIP5 
models, but with an improvement in precipitation 
intensity amplitudes. 

Fiedler et al. (2020) evaluated the simulation of 
MJO in CMIP6 models by calculating the ratio of 
the eastward-propagating spectral power of 
tropical precipitation to that of its westward-
propagating counterpart summed up over the 
MJO characteristic wavenumbers one to three 
and periods of 20–100 days for the November to 
April season between 10oS and 10oN (a quantity 
often used as a measure for the MJO). It was 
found that while for observations this ratio was 
found to be in the range of 3.2 to 3.4 for CMIP6 
multi model mean it was found to be around 2.2. 
While this is better than that in CMIP6, there is 
scope for further improvement in future CMIPs. In 
the same paper they also evaluated ENSO-rainfall 
teleconnections in the CMIP6 models by using the 
method from Power et al. (2013) by computing the 
empirical orthogonal function (EOF) of SST 



 

 

means for June–December within 15oS–15oN, 
140oE–100oW, based on detrended and filtered 
SST time series, and found that there are two 
clear regions with systematic biases in 
precipitation associated with El Niño events, (i) 
too-strong positive anomaly around the Maritime 
Continent indicating a westward displaced 
precipitation maximum during El Niño events, and 
(ii) too pronounced double ITCZ. 

The IPCC AR6 Atlas provides only the large-scale 
information, and higher resolution information still 
needs to be generated by means of downscaling. 
Most of the CMIP6 models that have contributed 
to the WG-I report do not have Singapore as an 
island due to coarse resolution, and either 
represent it as a part of the Malay peninsula or 
show it as an ocean point. In order to make 
physical climate change projections on regional 
scales and also for making the global model data 
usable by the vulnerability and impacts 
assessment community, the coarse resolution 
global model data needs to be downscaled to 
higher resolutions. As was the case with CMIP5, 
CMIP6 also provides 6-hourly fields of model 
variables that can be further used to carry out 
dynamical downscaling to generate more reliable 
high resolution climate change projections at a 
regional level. It is imperative to thoroughly 
evaluate the historical simulations against 
observations and reanalysis to have confidence in 
the future large-scale climate change projections, 
and also for sub-selection of the models for 
downscaling. 

Dynamically downscaled projections are 
produced in a coordinated way under the 
Coordinated Regional Climate Downscaling 
Experiment (CORDEX), a programme under the 
auspices of the World Climate Research 
Programme (Giorgi et al., 2009). During the last 
few years, a set of downscaled RCMs projections 
for the Southeast Asia domain has become 
available under the Coordinated Regional Climate 
Downscaling Experiment – Southeast Asia 
(CORDEX-SEA) (Juneng et al., 2016; Ngo-Duc et 
al., 2017; Supari et al., 2020; Tangang et al., 
2018, 2020), and is used by SEA countries for 
their national climate change assessments and 
adaptation planning. 

As a part of the Third National Climate Change 
Study for Singapore (V3) the Centre for Climate 
Research Singapore (CCRS) has dynamically 
downscaled 6 CMIP6 GCMs over Southeast Asia 
to 8 km resolution, and 5 of them were further 
downscaled over the western Maritime Continent 
to 2 km resolution for the historical period (1955-
2014) and future (2015-2100) for 3 Shared 
Socioeconomic Pathways (SSPs) used in the 
IPCC AR6, namely, SSP1-2.6, SSP2-4.5 and 
SSP5-8.5. The dynamical downscaling domain is 
discussed in Chapter 2, and SINGV-RCM is 
discussed in Chapter 6 of this report. 

There is no universally accepted methodology on 
how to select a subset of GCMs for downscaling, 
but in order to be consistent with the practice of 
the dynamical downscaling community, we follow 
a methodology in-line with the CORDEX 
experiment design protocol standard described in 
Section 5.2.4. The data and methods used in this 
work are described in Section 5.2. The evaluation 
of CMIP6 GCMs and the process of sub-selection 
is presented in Section 5.3, followed by discussion 
and conclusions presented in Section 5.4. 
 

5.2 Data and Methods 

In this section we present the various datasets 
used (observations, reanalysis and CMIP6 model 
outputs), the different metrics used for evaluation 
(root mean squared error, pattern correlation 
coefficient, etc.), the sub-setting criteria used, and 
the domain of evaluation such that it is relevant for 
our purpose of dynamical downscaling. 
 

5.2.1 CMIP6 Model Data 

Model outputs from historical simulations of 49 
CMIP6 GCMs were used in our analysis. For 
some of the variables data from all 49 GCMs were 
not available so we used whatever was available 
during the time of analysis. Information on the 
GCMs, including their name, modelling centre, 
nominal grid resolution and ensemble member 
used in analysis have been presented in Table 
5.1. The variables include 2m air temperature, 
surface temperature, rainfall, 2m specific 
humidity, winds and mean sea level pressure. We 
have used the period 1995-2014 for most of the 
evaluations. 



 

 

 
Table 5.1: List of CMIP6 GCMs, modelling centre, nominal grid resolution and ensemble member. The dark green colour 
highlights models which had 6-hourly data available at the time of the downscaling.  
 

Sl. No. Model Name Institution Country Nominal 
Resolution 

Ensemble 
member 

1 ACCESS-CM2 CSIRO-ARCCSS-BoM Australia 250 km /r4i1p1f1 

2 ACCESS-ESM1-5 CSIRO Australia 250 km r1i1p1f1 

3 AWI-CM-1-1-MR AWI Germany 100 km r1i1p1f1 

4 BCC-CSM2-MR BCC China 100 km r1i1p1f1 

5 BCC-ESM1 BCC China 250 km r1i1p1f1 

6 CAMS-CSM1-0 CAMS USA 100 km r1i1p1f1 

7 CESM2 NCAR USA 100 km r1i1p1f1 

8 CESM2-FV2 NCAR USA 250 km r1i1p1f1 

9 CESM2-WACCM NCAR USA 100 km r1i1p1f1 

10 CESM2-WACCM-
FV2 

NCAR USA 100 km r1i1p1f1 

11 CIESM THU China 100 km r1i1p1f1 

12 CNRM-CM6-1 CNRM-CERFACS France 250 km r1i1p1f2 

13 CNRM-CM6-1-HR CNRM-CERFACS France   50 km r1i1p1f2 

14 CNRM-ESM2-1 CNRM-CERFACS France 250 km r1i1p1f2 

15 CanESM5 CCCma Canada 500 km r1i1p1f1 

16 CanESM5-CanOE CCCma Canada 500 km r1i1p2f1 

17 E3SM-1-0 DOE E3SM-Project USA 100 km r1i1p1f1 

18 E3SM-1-1 DOE E3SM-Project USA 100 km r1i1p1f1 

19 E3SM-1-1-ECA DOE E3SM-Project USA 100 km r1i1p1f1 

20 EC-Earth3 EC-Earth-Consortium Europe 100 km r1i1p1f1 

21 EC-Earth3-Veg EC-Earth-Consortium Europe 100 km r1i1p1f1 

22 FGOALS-f3-L CAS China 100 km r1i1p1f1 

23 FGOALS-g3 CAS China 250 km r1i1p1f1 

24 FIO-ESM-2-0 FIO-QLNM China 100 km r1i1p1f1 

25 GFDL-CM4 NOAA-GFDL USA 100 km r1i1p1f1 

26 GFDL-ESM4 NOAA-GFDL USA 100 km r1i1p1f1 

27 GISS-E2-1-G NASA-GISS USA 250 km r1i1p1f1 

28 GISS-E2-1-G-CC NASA-GISS USA 250 km r1i1p1f1 

29 GISS-E2-1-H NASA-GISS USA 250 km r1i1p1f1 

30 HadGEM3-GC31-LL MOHC UK 250 km r1i1p1f3 

31 HadGEM3-GC31-MM MOHC UK 100 km r1i1p1f3 

32 INM-CM4-8 INM Russia 100 km r1i1p1f1 

33 INM-CM5-0 INM Russia 100 km r1i1p1f1 

34 IPSL-CM6A-LR IPSL France 250 km r1i1p1f1 

35 KACE-1-0-G NIMS-KMA South Korea 250 km r1i1p1f1 

36 MCM-UA-1-0 UA USA 250 km r1i1p1f1 

37 MIROC-ES2L MIROC Japan 500 km r1i1p1f2 

38 MIROC6 MIROC Japan 250 km r1i1p1f1 

39 MPI-ESM-1-2-HAM HAMMOZ-Consortium Germany 250 km r1i1p1f1 

40 MPI-ESM1-2-HR MPI-M Germany 100 km r1i1p1f1 

41 MPI-ESM1-2-LR MPI-M Germany 250 km r1i1p1f1 

42 MRI-ESM2-0 MRI Japan 100 km r1i1p1f1 

43 NESM3 NUIST China 250 km r1i1p1f1 

44 NorCPM1 NCC Norway 250 km r1i1p1f1 

45 NorESM2-LM NCC Norway 250 km r1i1p1f1 

46 NorESM2-MM NCC Norway 100 km r1i1p1f1 

47 SAM0-UNICON SNU South Korea 100 km r1i1p1f1 

48 TaiESM1 AS-RCEC Taiwan 100 km r1i1p1f1 

49 UKESM1-0-LL MOHC UK 250 km r1i1p1f2 

 

  



 

 

5.2.2 Observations and Reanalysis 
 
Multiple observational and reanalysis datasets 
have been used for evaluation. See Table 5.2 for 

details. We have used ensemble means of 
observations/reanalysis where feasible as our 
baseline to compute model biases, to address 
observational/reanalysis uncertainty. 

 

 
Table 5.2: List of gridded observational (blue) and reanalysis data sets (green) used for evaluation in this chapter (all the data 
was regridded to 1.5°x1.5°, monthly, below shows the original grids), their climate fields used, and reference. The abbreviation 
pr refers to precipitation; TAS: surface air temperature; PSL: mean sea level pressure; SST: sea surface temperature; HUSS: 
specific humidity.  

 
NAME FIELDS (resol./freq.) REFERENCES 
HadISST v1 SST (1°x1°, monthly) Rayner et al. 2003 

COBE v2 SST (1°x1°, monthly) Hirahara et al. 2014 

OISST v2 SST (0.25°x0.25°, monthly) Reynolds et al. 2007 

ERSST v5 SST (2°x2°, monthly) Huang et al. 2017 

HURRELL SST (1°x1°, monthly) Hurrell et al. 2008 

HadCRUT4 TAS (5°x5°, monthly) Morice et al. 2012 

BEST TAS (1°x1°, monthly) Rohde and Hausfather, 2020 

FROGs PR (1°x1°, daily) Roca et al. 2019 

IMERG V06 PR (0.1°x0.1°, 30 mins) Huffman et al., 2019 

GSMAP PR (0.1°x0.1°, hourly) Okamoto et al. 2005 

TRMM 3B42 PR (0.25°x0.25°, 3 hours) Huffman et al., 2007 

PERSIANN_CDR PR (0.25°x0.25°, sub-daily) Ashouri et al., 2015 

CMORPH_v1 PR (0.25°x0.25°, 3 hours) Xie et al., 2017 

GPCP PR (1°x1°, daily) Adler et al. 2003 

ERA5 reanalysis SST, TAS, HUSS, PSL, 
WINDS (0.25°x0.25°, hourly) 

Hersbach et al. 2020 

MERRA2 reanalysis SST, TAS, HUSS, PSL, 
WINDS (0.5° x 0.625°, daily) 

Gelaro et al. 2017 

JRA55 reanalysis 
  
 

SST, TAS, HUSS, PSL, 
WINDS (0.56°x0.56°, 
 sub-daily, monthly) 

Kobayashi et al. 2015 

5.2.3 Metrics 
 
Various statistical measures such as pattern 
correlation coefficient (PCC), mean absolute error 
(MSE), and root mean square error (RMSE) have 
been used to assess the performance of the 
models against observations and reanalysis. In 
addition, advanced metrics such as the Taylor 
diagram have also been used to assess the 
performance of the models. 
 

5.2.4 Sub-setting of CMIP6 GCMs 
 
In order to carry out sub-selection we follow 
standard practices suggested by the coordinated 
regional climate downscaling experiment 
(CORDEX; e.g. Gutowski et al. 2016). Thus, the 
sub-selected GCMs should: (1) span the range of 
GCM projections of temperature and precipitation 
over SEA, (2) perform satisfactorily in the 

historical climate, (3) span the range of model 
diversity in terms of genealogy (e.g., Knutti et al. 
2013), and (4) have 6-hourly lateral boundary 
conditions (LBCs) available to drive the regional 
climate model. In addition to the aforementioned 
criteria, we also make use of expert judgement to 
discard models that are unable to simulate 
important aspects of regional climate over SEA. 
 

5.2.5 Domain 
 
Our domain of analysis focuses mostly on SEA, 
but for some of the tropical processes of interest 
included in tier-II of the analysis we have used 
larger domains. For example, for ENSO and cold-
tongue bias analysis we have used the entire 
tropical Pacific domain. Figure 5.1 shows the 8 km 
and 2 km downscaling domains used in the V3 
study. The D1 domain (8 km resolution) covers 
almost the whole of SEA and is slightly larger than 



 

 

the CORDEX-SEA domain, whereas, the D2 
domain (2 km resolution) covers Singapore and 
the western Maritime Continent. We use a one-
way offline nesting, and the lateral boundary 
conditions for the 2 km model come from the 8 km 

downscaled data. Since the lateral and lower 
boundary conditions to drive the 8 km 
downscaling are obtained directly from the CMIP6 
GCMs, our evaluation primarily focuses on the 8 
km domain.  

 

 
Figure 5.1: Dynamical downscaling domains for Singapore’s Third National Climate Change Study at 8 km and 2 km resolutions. 

 

5.3 Evaluation of Key Climate 
Variables 
 
In this section we present the evaluation of key 
climate variables, namely, temperature, rainfall, 
winds, humidity and mean sea level pressure from 
the CMIP6 GCMs with an objective to identify the 
GCMs that show consistently poor performance 
and hence may not be considered fit for 
downscaling. The resolution used for multi-model 
mean for the GCMs is 1.5º, although not the lowest 
model resolution, it is the resolution fits for majority 
of the models. Thus, all the variables are 
conservatively re-gridded to 1.5º. The 
observational datasets are mostly 1º degree then 
all re-gridded to 1.5º to be able to compare to the 
model outputs.  
 

5.3.1 Temperature 

Figure 5.2 shows the climatological annual mean 
surface air temperature (tas) in observations (and 
reanalysis) and CMIP6 GCMs. Overall, the models 
perform well on annual timescales with low biases 
(white colour; biases in the range of +/- 0.5C) over 
almost half of the domain. For example, the biases 
are quite low over the tropical Indian Ocean. 
However, there are some notable biases which 
can be seen from Figs. 5.2e and f. Figure 5.2e 
shows (i) large positive biases over the Southern 
Ocean and east Pacific, (ii) negative biases over 
western and central tropical Pacific, (iii) negative 
bias over North Atlantic, and (iv) negative bias over 
Indochina. Figure 5.2f shows that the bias over 
large parts of the Maritime Continent is within +/- 
0.5C, with exceptions such as Indochina and 
tropical western Pacific which show negative 
biases. 

 



 

 

 

Figure 5.2: 1995-2014 mean surface air temperature (tas) in observation (a,b) and models (c,d). a. mean of five observational 
and reanalysis datasets (BEST, ERA5, HADCRUT4, JRA55, and MERRA2) for the 60N-60S domain. b. similar to a, but for the 
SEA domain. c. multimodel mean of tas from 47 CMIP6 models for the 60N-60S domain. d. similar to c, but for the SEA domain. 
e. model bias (multimodel mean from 47 models minus the observational mean). Hatched areas indicate the agreement by 70% 
of models on the sign of bias. f. similar to e, but for the SEA domain. 

 
Figure 5.3 shows the distribution of model 
simulated tas values along with their RMSE and 
PCC for the global and SEA domains and for the 
annual mean and all seasons. Figure 5.3a, b show 
that the median of the multimodal ensemble lies 
within the spread of the reanalysis for annual 
mean as well as for each season over both global 
and SEA domains. The 25-75 percentile range of 
tas in models spans the reanalysis uncertainty 
range for all seasons and both domains. Figure 
5.3c, d show that the median RMSE values are 

highest in DJF over both domains as compared to 
annual mean and other seasons. Given that the 
mean tas for DJF is already lower as compared to 
other seasons, higher RMSE values would mean 
even higher percentage errors. Figure 5.3e, f 
shows that the median PCC values are much 
higher over the global domain (~0.99), whereas it 
is somewhat lower over the SEA domain. Notably, 
the DJF PCC values are higher, especially over 
SEA. 



 

 

 
Figure 5.3: 1995-2014 mean tas averaged over the 60N-60S domain (a) and the SEA (b) in five observational and reanalysis 
datasets and 47 CMIP6 models. c. RMSE of models for the annual and seasonal tas in the 60N60S. d. similar to c, but for the 
SEA. e. PCC of models for the annual and seasonal tas in the 60N60S. f. similar to e, but for the SEA. The orange lines represent 
the median. The lower hinge is the Q1 quartile (25th), and the upper hinge is the Q3 quartile (75th). The upper and lower bars 
are based on 1.5 times the interquartile range (IQR) value. The outliers are shown in the open circles. 
 

 

Figure 5.4 shows the performance of the 
individual CMIP6 GCMs for the global (60oS to 
60oN) and SEA domains assessed from their 
RMSE and PCC values. For the global domain, 

we find that the annual mean RMSE mostly lies 
between the range of 1oC to 2oC, with around 5 
models exceeding 2oC. The seasonal means also 
show a similar behaviour. It is to be noted that we 



 

 

exclude the poles because we noted much larger 
biases over the polar region that may not be 
directly relevant to our purpose of sub-selection 
and at the same time masks the performance of 
the GCMs in the mid- and low-latitudes because 
of their lower values as compared to the higher 
latitudes. RMSE over SEA domain (Fig. 5.4b) 
mostly lies between around 0.7oC to 2oC, which 
was counter-intuitive since we were expecting 
regional biases to be larger than the global biases, 
but the regional biases over different regions can 
be higher or lower than the global mean, and it 
was good to see that the CMIP6 models have 
lower biases over our domain of interest. It is to be 
noted that many of the models show higher biases 
in DJF compared to other seasons and annual 
mean. The bottom five models based on annual 

mean RMSE are NorCPM1, BCC-ESM1, CNRM-
CM6-1, BCC-CSM2-MR, and CNRM-CM6-1-HR. 
The PCCs are shown in Figure 5.4c, d, for the 
global and SEA domains, respectively. The PCCs 
are generally quite high over the global domain 
with values greater than around 0.94 for the 
annual mean as well as all seasons. However, the 
PCCs over the SEA domain, in general, seem to 
be lower than the global, with values as low as 
around 0.65 for the JJA season. In general, DJF 
seems to have the highest PCCs, whereas JJA 
seems to have the lowest PCCs. Note that while 
the PCCs are generally higher in DJF, the RMSEs 
are also higher, as seen above. The bottom five 
models based on annual mean PCCs over the 
SEA domain are INM-CM4-8, NorCPM1, MCM-
UA-1-0, GISS-E2-1-H, and MIROC-ES2L.   

 



 

 

 
Figure 5.4: Performance of CMIP6 models as to RMSE for the annual and seasonal tas over the 60N60S (a) and SEA (b).  
Performance of CMIP6 models as to PCC for tas over the 60N60S (c) and SEA (d). 

  



 

 

5.3.2 Rainfall 
 
Similar analysis as presented above for near-
surface air temperature is then carried out for 
rainfall and presented in Figures 5.5 to 5.7. Figure 
5.5 shows the annual mean precipitation for the 
global and SEA domains and the corresponding 
biases based on multi-model means. From 
Figures 5.5a and 5.5c it can be seen that overall 
the CMIP6 GCMs perform well in simulating the 
large scale pattern and magnitude of rainfall, 
although there are some biases that can be more 
clearly seen in panels e and f of the figure. For 
example, even from the absolute values we can 

see the well-known double ITCZ bias over the 
tropical Pacific which has been present in 
previous generations of CMIP. From Figure 5.5e 
it can be seen that there are robust biases (based 
on 70% model agreement) over the tropical 
Pacific, tropical Atlantic, and western equatorial 
Indian ocean. Zooming into the SEA domain, we 
find positive biases over the South China Sea and 
over east of Borneo. In contrast, we see a large 
negative bias over the northern Bay of Bengal. 
Similar to the annual mean rainfall in Figure 5.5, 
JJA season rainfall in FigureA5.1 and the DJF 
season rainfall in Figure A5.2 also show 
consistent understanding of the evaluations.   

 

 
Figure 5.5: 1995-2014 mean precipitation (pr) in observation (a, b) and models (c, d). a. FROGS datasets for the 60N-60S 
domain. b. similar to a, but for the SEA domain. c. multi-model mean of pr from 48 CMIP6 models for the 60N-60S domain. d. 
similar to c, but for the SEA domain. e. model bias (e.g., multi-model mean from 48 models minus the observational mean). 
Stippled areas indicate the agreement by 70% of models. f. similar to e, but for the SEA domain. 

 

Figure 5.6 shows the inter-model spread of the 
absolute values of precipitation, RMSE, and PCC 
over the global and SEA domains. From Figure 
5.6a we see that the observed mean for the global 
domain is around 2.8mm/day, for annual as well 
as for various seasons with small seasonal 

variations. The CMIP6 GCMs, overall, 
overestimate the rainfall on seasonal as well as 
annual timescale scales with the median of the 
inter-model spread showing a value of around 3.2 
mm/day (an overestimate of around 14%). 
Notably, because of the overall overestimation in 



 

 

the GCMs the one that is closest to observations 
is considered an outlier in the distribution. As 
expected, the observed annual and seasonal 
means are higher over the SEA domain with 
higher seasonal variations (JJA being the highest 
and MAM being the lowest). The CMIP6 GCMs 
are found to perform quite well over SEA with the 
median value of the multi-model distribution 
overestimating the observed values by up to 5% 
on annual as well as seasonal timescales.  

From Figure 5.6c we find that the annual mean 
RMSE over the global domain is lower than the 
seasonal (as expected), and the values for MAM 
and JJA are slightly higher than other seasons. 
The RMSE values are relatively higher over the 
SEA domain on annual and seasonal timescales, 
with JJA showing the highest value and MAM 
showing the lowest, noting that these are also the 
wettest and driest seasons over the SEA domain, 
respectively (Figure 5.6d). For the global domain, 
the PCC values are generally high (0.8 to 0.9) for 
annual and all seasons except MAM (around 
0.75), as seen from Figure 5e. Whereas, for the 
SEA domain, they are slightly lower (0.7 to 0.8), 

with DJF showing a somewhat higher PCC of 
around 0.83. 

Figure 5.7 shows the annual and seasonal RMSE 
and PCC for the global and SEA domains for the 
individual models, with the best to worst shown 
from left to right, based on the annual values. For 
the global domain, the RMSE values are found to 
be higher in the JJA and MAM seasons, while for 
the SEA domain they are highest in JJA  (Figure 
5.7a, b). The bottom 5 models based on SEA 
annual performance using RMSE are MPI-ESM-
1-2-HAM, INM-CM4-8, MCM-UA-1-0, FGOALS-
g3, and IPSL-CM6A-LR. 

For the global domain, MAM is found to have the 
lowest PCC, whereas, for the SEA domain the 
PCC values are higher during DJF and lower 
during JJA (Figure 5.7c, d). Overall, as expected, 
the PCC values are lower than global both on 
annual and seasonal timescales. The bottom 5 
models based on annual rainfall PCC over the 
SEA domain are MPI-ESM-1-2-HAM, INM-CM5-
0, MCM-UA-1-0, IPSL-CM6A-LR, and INM-CM4-
8. 
 
 



 

 
Figure 5.6: 1995-2014 mean pr averaged over the 60N-60S domain (a) and the SEA (b) in FROGS observational datasets 
(including PERSIANN-CDR, IMERG, GPCP, CMORPH, GSMAP) and 48 CMIP6 models. c. RMSE of models for the annual and 
seasonal pr in the 60N60S. d. similar to c, but for the SEA. e. PCC of models for the annual and seasonal pr in the 60N60S. f. 
similar to e, but for the SEA. 

 
 



 

 
Figure 5.7: Performance of CMIP6 models as to RMSE for the annual and seasonal pr over the 60N60S (a) and SEA (b).  
Performance of CMIP6 models as to PCC for pr over the 60N60S (c) and SEA (d). 

  



 

5.3.3 Mean Sea Level Pressure 
 
In Figure 5.8 we compare the psl from 48 CMIP6 
models to the ensemble-mean reanalysis (JRA-
55, ERA5 and MERRA2) for the global and SEA 
domains.   
 
The subtropical oceanic highs in reanalysis 
(Figure 5.8a) are well captured by the models 
(Figure 5.8c), as is the relatively low psl over SEA. 

Figures 5.8b, d show that the southwest to 
northeast spatial gradient in psl is also simulated 
in models. The sign of the bias is not systematic 
across models, and is generally higher outside 
SEA, with some of the highest values collocated 
with mountain ranges (e.g. Himalayas, Rockies, 
Andes). Over SEA, there is a high over Indochina 
and low around east Java and Sulawesi, 
alongside a corresponding low/high bias in tas. 
Nevertheless, biases in psl are relatively small 
over much of SEA. 

 

 
Figure 5.8: 1995-2014 mean sea level pressure (slp) in observation (a, b) and models (c, d). a. Mean of JRA-55, ERA5 and 
MERRA2 for the 60N-60S domain. b. Similar to a, but for the SEA domain. c. Multimodel mean of slp from 48 CMIP6 models for 
the 60N-60S domain. d. Similar to c, but for the SEA domain. e. Model bias (multimodal mean from 48 models minus the 
observational mean). Stippled areas indicate the agreement by 70% of models on the sign of bias. f. Similar to e, but for the 
SEA domain. 

 

5.3.4 Humidity 
 
Figure 5.9 shows the annual mean specific 
humidity (huss) from the ensemble mean 
reanalysis (JRA-55, ERA5 and MERRA2) for the 
global and SEA domains, the same from the 
CMIP6 multi-model means, and the 
corresponding biases. Overall, the large-scale 

pattern in huss is simulated well in CMIP6 GCMs, 
although there are regional biases which can be 
seen in Figure 5.9e, f. Over the global domain 
there is large negative bias over the Indian region, 
South America, and western and central North 
Pacific, whereas, there is positive bias over 
tropical eastern Pacific, east Atlantic near the west 
coast of Africa, and the southern oceans. Over the 



 

SEA domain the biases are generally low, except 
for the dry bias over Indo-China, and southern 
equatorial Indian Ocean. Since the humidity field 
over the SEA domain is generally well simulated, 

we don’t show the inter-model spread in RMSE 
and PCC, and the rankings of the individual 
models for this variable.  

 

 
Figure 5.9: 1995-2014 annual mean specific humidity (huss) in reanalysis (a, b) and models (c, d). a. Mean of JRA-55, ERA5 
and MERRA2 for the 60N-60S domain. b. Similar to a, but for the SEA domain. c. Multimodel mean of huss from 48 CMIP6 
models for the 60N-60S domain. d. Similar to c, but for the SEA domain. e. Model bias (multimodal mean from 48 models minus 
the observational mean). Stippled areas indicate the agreement by 70% of models on the sign of bias. f. Similar to e, but for the 
SEA domain. 

 

5.3.5 Winds 
 
Next, we evaluate the 850hPa annual mean and 
seasonal winds over the global and SEA domains 
to check if there are any CMIP6 GCMs with 
unrealistic wind patterns, especially in regard to 
the monsoonal wind flow patterns. 

The results of Tangang et al., (2019) indicate 
anomalously strong easterlies over Papua in JJA, 
as well as anomalous westerlies around the tip of 
Sumatra that extend to the Malay Peninsula. 
McSweeney et al., (2015) examined 39 CMIP5 

GCMs and noted that models were generally able 
to simulate the Somali jet in terms of having the 
highest wind speeds near the core, as well as a 
predominantly westerly flow over India that turns 
south-westerly over the Bay of Bengal, then 
westerly over Indochina and turning southerly 
west of the Philippines.  

A small number of models exhibited an unrealistic 
feature of the winds turning southerly west of 
continental Southeast Asia. Some models were 
also noted for a monsoon flow that was too weak 
(e.g. in the region of the Somali jet).

 



 

 
Figure 5.10: 1995-2014 annual mean 850hPa JJA winds in reanalysis (a, b) and models (c, d). a. Mean of JRA-55, ERA5 and 
MERRA2  for the 60N-60S domain. b. Similar to a, but for the SEA domain. c. Multimodel mean winds from 49 CMIP6 models 
for the 60N-60S domain. d. Similar to c, but for the SEA domain. e. Model bias (multimodel mean from 49 models minus the 
observational mean). Stippled areas indicate the agreement by 70% of models on the sign of bias. f. Similar to e, but for the 
SEA domain. 

 

 
These observational features can be seen in 
Figure 5.10a, b. Figure 5.10c, d is broadly 
consistent with the notion that models are 
generally able to simulate the South-westerly 
monsoon. Models exhibit a diversity of responses 
with regard to the strength of the Somali Jet, being 
slightly weaker on average (Figure 5.10e). Here a 
positive bias in speed is shown to the north over 
the Arabian Sea and northern India.  

Such characteristic anticyclonic bias is linked to 
the tendency for the westerly flow to extend too 
strongly over Southeast Asia into the South China 
Sea associated with an eastward shift and 
weakening of the Western North Pacific 
Subtropical High (WNPSH).  

Over the East of India, there is a robust northward 
shift of wind speeds near Sri Lanka upstream of a 

robust increase in winds over the Malay Peninsula 
and Borneo and decrease in winds closer to New 
Guinea. Figure f indicates that the anomalously 
strong westerlies near the tip of Sumatra seen in 
the CMIP5 multi-model mean remains a common 
issue in CMIP6 GCMs. The representation of the 
monsoon in the individual models (not shown) is 
generally realistic.  

A key feature of DJF circulation over the Maritime 
Continent is the turning of the northeasterly winds 
over the South China sea towards the Malay 
Peninsula, and its subsequent convergence with 
westerlies from the Indian ocean (McSweeney et 
al., 2015). This is generally captured by the multi-
model mean (Figure 5.11a, d).

 



 

 

 
 Figure 5.11: As in Fig. 5.10, but for DJF. 

 

 
In their analysis of the ensemble mean of 11 
CMIP5 GCMs, Tangang et al. (2019) noted an 
easterly component of wind that was too strong 
over Indochina in DJF, and anomalously strong 
easterlies over Papua. As for individual models, 
McSweeney et al., (2015) presented results from 
38 CMIP5 GCMs and noted that some models had 
an anomalously strong easterly component, such 
that the flow was directed towards Vietnam rather 
than the Malay Peninsula.  

Anomalously strong easterlies remain a robust 
bias in CMIP6 models (Figure 5.11d, f), together 

with anomalously strong outflows over the Indian 
Ocean (net reduction in wind speed).  

Figure 5.12a, b shows the range of model ws850 
values along with that from the reanalyses. 
Overall, we find that the models simulate ws850 
satisfactorily. The median ws850 values are lower 
in SEA as compared to GLOB. However, in some 
cases, the RMSE of ws850 in SEA can exceed 
that of GLOB (Figure 5.12c, d). Pattern correlation 
of ws850 is generally quite high for GLOB but falls 
over SEA (below 0.6 in one case), as can be seen 
in Figure 5.12e, f. 

 



 

 
Figure 5.12: (a) Boxplot of wind speed at 850 hPa (ws850) over GLOB in CMIP6 models for DJF and JJA. Values for three 
reanalyses are shown with symbols.  (c) Boxplots of RMSE of ws850 against values computed with the ensemble mean of the 
three reanalyses. (e) As in (c), but for pattern correlation. (b, d, f) as in (a, c, e), but over SEA.  

 

 

 



 

 
Figure 5.13: Model performance (better to worse) in ws850 as measured by RMSE over (a) GLOB and (b) SEA. (c-d). As in (a-
b), but for pattern correlation.  



 

Model simulations of ws850 are generally better 
over GLOB as compared to over SEA. Some 
notable outliers over SEA are NorCPM1, which 
has anomalously strong winds over Indochina and 
its nearby latitudinal region in DJF, and the INM 
models (INM-CM4-8 and INM-CM5-0), where the 
south-westerly monsoonal flow in JJA is weaker 
and/or angled too far north (above the South 
China Sea). Based on RMSE over the SEA 
domain for the 2 seasons, the bottom 5 models 
are BCC-ESM1, CESM2-FV2, INM-CM4-8, MCM-
UA-1-0, and NorCPM1. Based on PCC the bottom 
5 models are MIROC-ES2L, MCM-UA-1-0, INM-
CM5-0, NorCPM1, and INM-CM4-8. 

In summary, we find that, many of the CMIP6 
GCMs are able to simulate the large-scale 
patterns of rainfall, temperature, winds, humidity 
and psl over the global and SEA domains, on 
annual and seasonal timescales. However, there 
are some biases in each of these variables that 
are regionally and seasonally dependent. 
Although many models are found to perform quite 
well, some are found to perform unsatisfactorily to 
an extent that we don’t have enough confidence 
in them to consider for our dynamical 
downscaling. Some of the models that we have 
identified to discard are: INM-CM4-8, INM-CM5-0, 
NorCPM1, MCM-UA-1-0, and MIROC-ES2L. 
 

5.4 Evaluation of Key Climate 
Processes 

In this section we present the evaluation of key 
climate processes that are important drivers of 
weather and climate over Maritime Continent 
region, namely, monsoon, ENSO, IOD, equatorial 
Pacific cold tongue, northeast monsoon surge, 
and MJO  from the CMIP6 GCMs with the same 
objective as the in section above, i.e. to identify 
the GCMs that show consistently poor 

performance and hence may not be considered fit 
for downscaling. 
 

5.4.1 Monsoon 

Monsoon rainfall, associated with changes in wind 
circulation and the north-south movement of the 
ITCZ dominates the seasonal variations of rainfall 
in the tropics. The easterlies in the southern 
hemisphere and westerlies in the northern 
hemisphere, along with the cross-equatorial flow 
over the western equatorial Indian ocean are 
notable features of the boreal summer monsoon 
(Figure 5.10a). Similarly, the corresponding wind 
circulation features can be seen from Figure 5.11a 
that are associated with the boreal winter 
monsoons. Monsoons have a key role in shaping 
the weather and climate of the MC domain. The 
MC domain is affected by the boreal summer 
monsoon (JJA; southwest monsoon) as well as 
the boreal winter monsoon (DJF; northeast 
monsoon). 

Seasonal migration of ITCZ leads to climatological 
rainfall peaks during the monsoon season in 
Northern and Southern hemispheres. Figure 5.14 
(top left) shows the observed migration of 
monsoon rainfall for the 1995-2014 period with NH 
peaks during JJAS and SH peaks in DJFM. Note 
the more persistent wet all year around in the 
equatorial (+/- 5 degrees) region. Also, the NH 
monsoon extends further north compared to the 
SH monsoon extension southward. 

CMIP6 models on average simulate the seasonal 
migration of the ITCZ, but individual models can 
show significant systematic errors, such as 
shifting the monsoonal peaks in time (lagged) or 
in space (not reaching as far north/south). Many 
models are too intense (both in boreal and austral 
summer) plus there are shifts in peaks, but not 
necessarily in equatorial tropics. 

 

 

 

 

 

 

 

 



 

 
Figure 5.14: The time-latitudinal progression of zonally-averaged (80-160E) climatological monthly precipitation (i.e. passage of 
the ITCZ-monsoon rain belt) for the period 1995-2014. (Top row)  Multi-satellite-mean observations from the FROGS database 
(FROGS-Sat), the multi-model mean (MMM) and the bias in the MMM (MMM-Bias). The 48 CMIP6 models are individually shown 
in subsequent rows. Also shown is the pattern correlation coefficient (PCC) value between each model and FROGS computed 
over the cyan box (June-October, 10-20N, representing the boreal summer monsoon season). The area average represented by 
the cyan box is shown for FROGs (8.1 mm/day). 



 

Figure 5.15 shows the ranked pattern correlation 
values comparing zonally-averaged climatological 
monthly rainfall from each CMIP6 GCM with 
satellite observations for the June to October 
period across 10-20N. It can be seen from the 
figure that many of the CMIP6 GCMs perform 

quite well in simulating monsoons with around 18 
of them having PCC of more than 0.9. Based on 
the monsoon PCC shown here the bottom 5 
models are MIROC-ES2L, INM-CM4-8, IPSL-
CM6A-LR, NESM3, and INM-CM5-0. 

 

 
Figure 5.15: Ranked pattern correlation values comparing zonally-averaged climatological monthly rainfall from each model 
with satellite observations for the boreal summer monsoon period (June to October) across 10-20N. 

 
In Figure 5.16 we show the normalised model bias 
in area average rainfall during the Jun-Oct period 
relative to satellite observations. We can see from 
the figure that 38/48 models show wet bias, with a 
considerable spread that varies in the range 2-
36%. Overall, the multi-model mean (MMM) 
shows 9% wet bias, and shows really good pattern 

correlation (0.966; Figure 5.15). This is consistent 
with other studies (e.g., Martin et al. 2021) that 
show models tend to underestimate rainfall over 
the Indonesian island region in JJA and 
overestimate it over the region of the South China 
Sea and western Pacific (this is particularly 
prevalent in the HadGEM3 family of models).  



 

 
 

 
Figure 5.16: Normalised model bias in areal average rainfall during the boreal summer monsoon period (Jun-Oct) relative to 
satellite observations across 10-20N. 

 

 
Unlike the off-equatorial tropics, the ITCZ crosses 
the equatorial zone both during the northward and 
southward movement, hence providing a 
somewhat different flavour to the monsoons. In 
Figure 5.17 we show the climatological (1995-
2014) annual cycle of rainfall area-averaged over 
the equatorial region 80–160E, -2.25–2.25N from 
observations and from CMIP6. For the CMIP6 
GCMs we show the multimodel mean (MMM), 

multimodel maximum (MMX) and multimodel 
minimum (MMN). Although there is a large 
diversity in the models as can be seen from the 
difference between the MMX and MMN, overall, 
the MMM resembles the both satellite rainfall 
(FROGS) over the region and the station-based 
rainfall annual cycle quite well. This is further 
confirmed from the DJF spatial pattern of rainfall 
from FROGS and MMM. 

 



 

 

 
Figure 5.17: (Top panel) Climatological (1995-2014) annual cycle of rainfall area-averaged over the equatorial region 80–160E, 
-2.25–2.25N in the FROGS multi-satellite and CMIP6 multimodel mean (MMM), multimodel maximum (MMX) and multimodel 
minimum (MMN). The climatological annual cycle over Singapore (28-station average) is shown for comparison. The bottom 
panel shows the DJF rainfall from FROGS and MMM. 

 
 
 

Monsoons are traditionally associated with a 
reversal of low-level winds, turning from easterlies 
to monsoon westerlies upon the arrival of the first 
strong monsoon surge. Figure 5.18 shows this for 
regions north and south of the equator indicating 
the climatological monsoon onset to be in May for 
the northern hemisphere and December for the 
southern hemisphere monsoon periods. Looking 
at the equator, the passing over of the ITCZ twice 

a year creates a different situation with winds 
being (a) generally weak throughout the year and 
(b) only weak wind reversals with mostly 
climatological weak westerlies for most months. 
The multi-model mean from the CMIP6 GCMs 
performs quite well in simulating the overall 
annual cycle and the May and December 
monsoon onsets in the northern and southern 
hemispheres, respectively. 

 

 
 



 

 
Figure 5.18: Domain mean of climatological (1995-2014) zonal wind at 850 hPa over (a) 110E to 115E, 5N to 10N (b) 100E to 
110E, 5S to 5N, (c) 110E to 120E, 10S to 5S. The three domains are shown in the inset in (a). The shading shows the full range 
of the reference reanalysis datasets (ERA5, JRA55, MERRA2) as well as 49 CMIP6 models. 

  



 

5.4.2 ENSO 

ENSO is associated with the equatorial Pacific 
Ocean variability influencing atmospheric 
processes remotely and thereby one of the most 
important climate drivers that influences year to 
year variability of temperature and rainfall across 
the Maritime Continent (Juneng and Tangang 
2005). Across the Indo-Pacific Ocean, ENSO 
induces a zonal dipole pattern of precipitation 
variability, i.e., positive variability in the Tropical 
Pacific (TP) and “horseshoe” shaped negative 
variability towards the MC (Langenbrunner and 
Neelin 2013). That is, TP becomes wetter than 
normal while MC becomes drier. Physically, 
ENSO-rainfall teleconnection over the MC is part 
of the ENSO-induced circulation responses over 
the tropics (Wang et al. 2003; Lau and Nath 2003; 
Stuecker et al. 2015).  

In boreal summer when El Niño develops, a 
sequence of evolution begins with the eastward 
shifting of Walker Circulation due to the 
anomalous warming in eastern Pacific. The shift 
suppresses convection over the MC (also 
weakens Asian–Australian Monsoon) and 
enhances convection in the Central Pacific. Also 
note that the ENSO evolution during summer 
depends on what has happened in the previous 
boreal winter.  

Here we investigate GCM’s performance on 
ENSO, and we mainly focus on the climatology of 
ENSO amplitude, frequency, and its 
teleconnection. ENSO also varies from decade to 
decade, not only in amplitude and frequency 
(Wittenberg 2009) but also in its diversity and 
asymmetry characteristics (Chen et al. 2017). To 
provide a more reliable evaluation for ENSO 
interannual variability, we choose a longer 30-year 
period (1985-2014) as the study period instead of 
using 1995-2014 (20-year chosen by IPCC AR6). 

ENSO Amplitude 

Here as part of the evaluation for regional 
downscaling, we briefly investigate whether 
CMIP6 models can simulate reasonable realistic 
amplitude for ENSO. ENSO amplitude is normally 
represented using the DJF season standard 
deviation of the Nino3.4 index. This amplitude 
varies largely across different ENSO events (e.g., 
weak, moderate, and extreme events) as part of 

the natural variability of the ocean state. 
Additionally, simulations of these events show 
variations across these climate models (e.g, Chen 
et al. 2017) which originate from model-internal 
sources. Future projection for ENSO amplitude is 
also very uncertain (e.g., Beobide-Arsuaga et al. 
2021) because of the difficulties in estimating how 
the natural variability might change as well as the 
remote teleconnections associated with ENSO.  

As can be seen from Figure 5.19, ENSO 
amplitude average from observation and 
reanalysis is 1.13°C. Model mean ENSO 
amplitude is 1.19°C, which is very close to the 
observation. We do notice a large spread across 
individual models, from very low (around 0.5°C) or 
very high (over 2°C) ENSO amplitude. Based on 
ENSO amplitude the bottom 6 models are INM-
CM4-8, CNRM-CM6-1-HR, INM-CM5-0, CESM2-
FV2, MIROC-ES2L, and NorESM2-MM. 
 

ENSO Frequency 

ENSO generally occurs every 2 to 7 years (Cane 
and Zebiak, 1985). Studies suggested that 
extreme El Niño and La Niña events in CMIP5 
models will occur more frequently in a changing 
climate (Cai et al. 2014, 2015). However, as to 
frequency of all ENSO events, many studies 
concluded that ENSO frequency changes are 
strongly model-dependent, and the model 
consensus is not robust on how ENSO frequency 
will change in a changing climate (Guilyardi 
(2006), Callahan et al. (2021)).  

Given that ENSO tends to peak during boreal 
winter (DJF season), here we use the index 
Y=DJF season averaged Niño3.4 anomaly, and 
we define a threshold TH=0.6 X standard 
deviation of Y. Thus a given year is considered to 
be in an El Niño state when Y>TH. The year in a 
La Niña state is when Y<-TH. The year in the 
neutral state is when -TH<=Y<=TH. Note that we 
classify individual years instead of months. Also 
note that we do not use a fixed threshold rather a 
model-dependent threshold. For HadISST, the 
threshold is 0.68°C, ERA5’s threshold is 0.74°C, 
and MERRA2’s threshold is 0.68°C.  

We define the frequency of El Niño years (FEN) 
as the number of El Niño years divided by the total 
number of years. We also define the frequency of 
La Niña years (FLN) and the frequency of neutral 



 

years (FNEU) in a similar way, and 
FEN+FLN+FNEU=1. It is known that El Niño 
occurs every 2 to 7 years, such that 
0.14<FEN<0.5. As can be seen from Figure 5.20, 
from observations and reanalysis, for El Niño, 
observation mean frequency is 0.3. For models, 
multi-model mean for El Niño FEN_model=0.29, 

which is very close to the observation and 
reanalysis. Models have a spread as to the 
frequency, from 0.15 to 0.4. Based on the ENSO 
frequency the bottom few models are KACE-1-0-
G, CanESM5, IPSL-CM6A-LR, CESM2-WACCM-
FV2, FGOALS-g3, and GISS-E2-1-G-CC.

 

 

 
Figure 5.19: ENSO amplitude defined as standard deviation of Nino3.4 index (1985-2014 DJF mean). 
 

 

 
Figure 5.20: The frequency of El Niño for 47 CMIP6 GCMs and from observations and reanalysis from 1985 to 2014. Also 
shown are the ensemble mean for models and for observations and reanalysis. 

 
 

ENSO Teleconnection 
 
ENSO has impacts on worldwide precipitation 
variabilities (Ropelewski and Halpert 1987). 
Across the Indo-Pacific Ocean, a zonal dipole 

pattern of precipitation variability occurs during El 
Niño, i.e., positive variability in the Tropical Pacific 
(TP) and “horseshoe” shaped negative variability 
towards the Maritime Continent (MC) 
(Langenbrunner and Neelin 2013). That is, TP 



 

becomes wetter than normal while MC becomes 
drier. In boreal summer when El Niño develops, a 
sequence of evolution begins with the eastward 
shifting of Walker Circulation due to the 
anomalous warming in eastern Pacific. The shift 
suppresses convection over the MC (also 
weakens Asian–Australian Monsoon) and 
enhances convection in the Central Pacific (Wang 
et al. 2003; Lau and Nath 2003; Stuecker et al. 
2015).  

As to the model performance on the ENSO 
teleconnection over the MC and Western Pacific, 
both CMIP5 and CMIP6 models tend to 
underestimate the negative rainfall teleconnection 
over the Central Maritime Continent but 
overestimate the positive ENSO rainfall 
teleconnection in the western Pacific and Eastern 
Maritime Continent (Jiang et al. 2022). Here, as 
part of the model evaluation for regional 
downscaling, we evaluate the performance of 
ENSO-rainfall teleconnection over the Tropical 
Pacific and the Maritime Continent in CMIP6 

models and show it in Figure 5.21. We define the 
domain averaged rainfall and calculate the lag-0 
correlation and covariance between the rainfall 
and the Niño3.4 TS anomaly (divided by one 
standard deviation of SST to only retain the pr unit 
of mm/day). We use the HadISST ts and GPCP 
rainfall as the observation benchmark.  

We find that models perform well for the TP 
region. However, models overestimate the rainfall 
variability over the eastern MC but underestimate 
the El Niño-induced rainfall variability over the 
central MC. It is due to the westward extension of 
the cold tongue bias that pushes the surface 
temperature and rainfall variability from the 
western Pacific to the MC. For the CMC during the 
JJA season, observed rainfall variability is -0.51 
mm/day, and model variability is -0.26 mm/day 
(0.25 mm/day weaker than the observation). 
During the DJF season, observed rainfall 
variability is -0.81 mm/day, and model variability is 
-0.46 mm/day (0.35 mm/day weaker than the 
observation).

 

 
Figure 5.21: ENSO-rainfall teleconnection in the observation and CMIP6 models. a. Observed global ENSO-precipitation 
correlation coefficient during boreal summer (JJA). Here the correlation coefficient is calculated between the anomalous 
precipitation (pr) and Niño3.4 sea surface temperature (TS). Stippled area indicates significant correlation with p-value<0.01. 
Defined domains of Central Maritime Continent (CMC) (black dashed box), Eastern Maritime Continent (EMC) (green box), and 
tropical Pacific (TP)(blue dashed box) are shown. b. similar to a, but focusing on the MC. c-e shows the model performance as 
to the ENSO-rainfall teleconnection. c. 12-month covariance between the Niño3.4 TS and the CMC domain-averaged 



 

precipitation. Observations (GPCP, black curve), reanalysis (ERA5, green dashed curve), and the multi-model mean of 32 
CMIP6 models for the historical period (blue curve) are shown. The shade covers the 95% model range. d. similar to c but 
showing the EMC domain. e. similar to c but showing the TP domain. 
 

 

5.4.3 IOD 
 
The Maritime Continent is in between the Indian 
Ocean and Pacific Ocean and is affected by the 
ocean state in both. Hence, we also evaluate 
model performance over the Indian Ocean. We 
define the IODe index =ts averaged over the 
eastern IO [90E-110E, 10S-0S]. IODw index= ts 
averaged over the western IO [50E-70E, 10S-
10N]. Then we define the IODemw index=IODe 
minus IODw, which indicates the zonal ts gradient.  

We analyzed the amplitude of IOD, defined as one 
standard deviation of the monthly ts anomaly in 
IODemw.  Observed IOD amplitude is 0.4°C, 
model mean IOD amplitude is 0.52°C (0.12°C 
stronger). Here models tend to have slightly 
stronger variability than the observation (Figure 
5.22). Based on IOD amplitude the bottom few 
models are the 2 INM models, TAIESM-1, SAM0-
UNICON, and CESM-FV2.  

 
Figure 5.22: IOD amplitude in observations (mean in black line) and models (mean in black line). IOD amplitude is calculated 
using one standard deviation of the IODemw index (annual mean, 1985-2014). 
 

 

5.4.4 Equatorial Pacific Cold Tongue 
 
Here we define an index to measure the overall 
equatorial Pacific ts. TPI =whole equatorial Pacific 
averaged over [150E-280E 5N-5S]. Within the TP, 
the warm pool is on the western side, and the cold 
tongue is on the eastern side. Here we define the 
CTI index = averaged ts over the cold tongue 
region [180°E-270°E,5°N-5°S]. The zonal ts 
gradient is also an important dynamical feature to 
simulate. Here we define a CTGI=cold tongue 
gradient index =CTI-TPI, annual mean from 1985 

to 2014. CTGI tells the cold tongue ts relative to 
the whole equatorial Pacific. annual mean 
observation CTGI is -0.54°C. Model mean CTGI is 
-0.62°C (-0.08°C slightly stronger cold tongue 
relative to the whole TP, also indicating a stronger 
zonal ts difference) (Figure 5.23). This stronger 
cold tongue in models is associated with a 
stronger zonal wind and westward extension of 
the cold tongue into the warm pool. Based on the 
equatorial Pacific cold tongue bias, the bottom few 
models are MPI-ESM1-2-HR, NorESM2-LM, 
GISS-E2-1-G, and GISS-E2-1-G-CC.

  

 



 

 
Figure 5.23: Pacific cold tongue gradient index (CTGI) in observation and models (1985-2014). The negative value indicates 
the eastern cold tongue area is cooler than the western warm pool.  

 
 

5.4.5 Northeast Monsoon Surge 
 
Northeast monsoon surges are a key synoptic 
feature of the boreal winter circulation over the 
Maritime Continent (e.g. Chang et al., 2005) and 
can lead to extreme rainfall. These surges can 
also be enhanced by the presence of a favourable 
phase of the MJO (e.g. Lim et al., 2017) and might 
also aid the MJO in its passage across the 
Maritime Continent (Pang et al., 2018). Given the 
importance of boreal winter monsoon cold surges 
to the weather and climate of SEA, the 
performance of CMIP6 models in simulating cold 
surges is quite relevant to the evaluation and 
subsequent sub-selection for dynamical 
downscaling.  

Most of the existing literature on boreal winter cold 
surges over the Maritime Continent have focused 
on their observed characteristics, with relatively 
little mentioned on their simulation in models. An 
earlier analysis of CMIP5 models (McSweeney et 
al., Appendix 3 of V2) reported that the easterly 
component of surge winds were too strong in 
some models relative to the northerly component, 
with the flow directed towards Vietnam rather than 
southwards, while a more recent study by Xavier 
et al (2020) found that the UKMO Global 
Atmosphere 7.0 (GA7.0) and Global Coupled 3.0 
(GC3.0) configurations of the Unified Model yield 
a dry bias in the simulation of surge rainfall.  

In Figure 5.24 we present the evaluation of cold 
surge simulations in CMIP6 models, defined in 
Chapter 3.7. Based on reanalysis data, one can 
see from Figure 5.24a that the north-easterly 
winds over the South China Sea turn north-
westerly after crossing the equator, together with 
high rainfall, especially over Philippines and 
Borneo. Figure 5.24b shows that the models are 
able to capture the general flow of the surge 
winds, including the turning at the equator. The 
easterly bias flagged in (McSweeney et al., 
Appendix 3 of V2) is not immediately obvious in 
the individual models (figure not shown), with the 
caveat that their analysis was performed using a 
fixed wind speed threshold, whereas this analysis 
uses a threshold that is tied to the mean and 
standard deviation of each model. 

Models generally have a wet bias over Sulawesi 
and a dry bias over the Philippines (Figure 5.24c), 
possibly related to the model resolution of the 
topography of the Philippines. Models generally 
underestimate the rainfall over the Indian Ocean, 
with the multi-model anomalous winds directed 
over the Indian subcontinent. Over the Western 
Maritime Continent, rainfall bias can be either 
positive or negative. Models generally 
underestimate the percentage of surge days in 
NDJF (19% in REF), with 32 out of 36 models 
used for this analysis, exhibiting frequencies from 
15 to 19%, and four models below 15%: AWI-
ESM-1-1-LR (14%), FGOALS-f3-L (14%), KACE-
1-0-G (12%) and TaiESM1 (8%). 



 

 

 
Figure 5.24: (a) Precipitation and 850 hPa winds composited over surge days in REF (winds and PSL are derived from the 
ensemble mean of ERA5, MERRA2, and JRA55, precipitation the ensemble mean of 5 datasets from FROGs: CMORPH, 
GSMAP, IMERG, PERSIANN-CDR, and TRMM 3B42). (b) As in (a), but for 36 CMIP6 models. (c) Model bias in surge 
precipitation and winds (i.e. (b) - (a)). 

  



 

5.4.6 MJO 
 
The Madden-Julian Oscillation (MJO; Madden & 
Julian, 1971, 1972), characterized by an 
eastward-propagating large-scale band of 
convection from the Indian Ocean to the central 
Pacific, is one of the important climate drivers 
affecting global weather and climate, and 
especially the Maritime continent region (e.g., Lim 
et al. 2017). However, representing the MJO in 
climate models has been a challenge. In a recent 
study, Chen et al. (2021) evaluated the simulation 
of MJO in CMIP5 and CMIP6 models and reported 
that the MJO characteristics are better reproduced 
in CMIP6 with a corresponding decrease in inter-
model spread in biases. However, there still are 
existing biases in CMIP6 models, such as, 
underestimation of frequency of initiation, 
underestimation of amplitude, and overestimation 
of the MC barrier effect on MJO propagation 
speeds. From CMIP5 to CMIP6, while some 
models have improved skills, some others have 
degraded. Le et al., (2021) reported that the MJO-
related precipitation over the MC is still 
underestimated in CMIP6 models. 

While various metrics have been used in the 
literature to evaluate the performance skill in 
models, one of the widely used metrics used for 
evaluation is the Eastward/Westward power ratio 
(E/W ratio hereafter). This metric indicates the 
robustness of eastward propagating feature of the 
MJO (Zhang and Hendon 1997), and has been 
widely used in observational (e.g., Zhang and 
Hendon 1997; Hendon et al. 1999) and modelling 
studies (e.g., Lin et al. 2006; Kim et al. 2009). In 
Figure 22 we show the E/W ratio for the months 
November-April over the period 1995-2014 using 
precipitation from GPCP v1.3 as the baseline and 
compare the same with CMIP6 models.  

While the observed ratio is around 2.8, in models 
it can vary from less than 1 (westward 
propagating) to more than 5 (strongly eastward 
propagating). From this figure, some CMIP6 
models, namely, CanESM5, INM-CM4-8, and 
INM-CM5-0 can clearly be discarded as they show 
a westward propagating MJO. Most of the models 
show an E/W ratio lower than observed, and 
hence a slower eastward propagation, maybe due 
to stronger barrier effect of the MC. 

 

Figure 5.25: East-West power ratio of CMIP6 GCMs for November-April from 1995 to 2014 compared to GPCP v1.3. 
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5.5 Model Independence 
 
Following Brunner et al (2020), Table 5.3 shows 
the CMIP model families built on similar internal 
schemes for atmosphere, ocean, etc. It has been 
shown in some past studies that the CMIP model 

archive is not an archive of completely 
independent models. This raises the question 
about independent realisations of future climates 
and in general the understanding is that the CMIP 
ensemble is a somewhat ‘degenerated’ ensemble 
of future states. 

 
Table 5.3: CMIP6 model families based on the genealogy reported in Brunner et al. (2020) using 33 models. The 
genealogy is computed based on the global mean surface-air temperature and mean sea level pressure. Models in 
bold were selected for downscaling. 

Model 
Family 

Models belonging to specific family Common family feature  

1 CanESM5-CanOE, CanESM5   
Built within ONE modelling centre 
on similar schemes 

2 CESM2-WACCM, CESM2, NorESM2-MM, FIO-ESM-2-0  
Built on NCAR’s atmosphere 
model 

3 CNRM-ESM2-1, CNRM-CM6-1, CNRM-CM6-1-HR   
Built within ONE modelling centre 
on similar schemes 

4 EC-Earth3-Veg, EC-Earth3  
Built within ONE modelling centre 
on similar schemes 

5 FGOALS-f3-L, FGOALS-g3   
Built within ONE modelling centre 
on similar schemes 

6 INM-CM5-0, INM-CM4-8   
Built within ONE modelling centre 
on similar schemes 

7 MIROC-ES2L, MIROC6   
Built within ONE modelling centre 
on similar schemes 

8 MPI-ESM1-2-LR, MPI-ESM1-2-HR, AWI-CM1-1-MR, NESM3  
All using ECHAM-like atmosphere 
model 

9 
UKESM1-0-LL, HadGEM3-GC31-LL, ACCESS-CM2, KACE-1-
0-G, ACCESS-ESM1-5  

All using the UM as a core 
atmospheric model system 

NA 
GFDL-CM4, GFDL-ESM4, MRI-ESM2-0, CAMS-CSM1-0, 
GISS-E2-1-G, BCC-CSM2-MR, IPSL-CM6A-LR, MCM-UA-1-0   

More distant association with 
some of the other families 

 

 
In order to provide a downscaling ensemble from 
as independent as possible GCMs, we have 
identified a number of models which are possible 
choices, and together with other sub-selection 
metrics might help identify the most suitable set of 
independent models to use for downscaling. 

5.6 Range of Future Projections 
and ECS 

As discussed in Chapter 4 (subsection 4.2.1), the 
Equilibrium Climate Sensitivity (ECS) is defined as 
the global- and annual-mean near-surface air 
temperature rise that is expected to occur 
eventually, once all the excess heat trapped (top-
of-atmosphere radiative imbalance) by the 
doubling of CO2 has been distributed evenly down 
into the deep ocean (i.e. when both the 

atmosphere and ocean have reached equilibrium 
with one another - a coupled equilibrium state). 

Many CMIP6 models exhibit an ECS of 5°C or 
higher (Zelinka et al., 2020), much higher than the 
upper value of the CMIP5 range of 4.5°C. Based 
on the analysis of Sherwood et al. (2020), the 
Likely Range now range in ECS was constrained 
to lie in the range 2.5 - 4.0°C, down from what was 
reported in AR5. The IPCC also narrowed the 
Very Likely Range of ECS to be between 2.0 to 
5.0°C, down from 1.0 to 6.0°C. The likely and very 
likely range of ECS in AR5 and AR6 are shown in 
Figure 5.26 for reference. 

Figure 5.27 shows the ECS from the various 
available CMIP6 GCMs. The wide range of ECS 
can be seen from the figure with models like those 
from the INM showing values of less than 2oC, 



 

whereas, there are models like CanESM5, 
CIESM, and HadGEM3-GC3-1-LL that have ECS 
values greater than 5.5oC. Ideally, we would like 

to span the range of ECS, while keeping other 
sub-selection dimensions under consideration, 
and also the AR6 constrained range. 

 

 
          Figure 5.26: Likely and very likely range of ECS in AR5 and AR6 

 

 
Figure 5.27: Equilibrium climate sensitivity of CMIP6 GCMs ranked high to low from left to right. The gray bars indicate models 
that we do not have full variable lists to analyze at the time of the V3 study.  

 



 

5.7 Data Availability 
 
For the purpose of our dynamical downscaling, we 
need 6-hourly profiles of temperature, zonal and 
meridional winds, and specific humidity (for initial 
conditions and lateral boundary conditions), 
surface pressure (for initial conditions), and 6-
hourly sea surface temperatures (for initial 
condition and lower boundary condition). We also 
required that model outputs were available at 20 
levels and up to at least a pressure level of 5 hPa. 
Where available we used the skin temperature 
(ts), else, a combination of surface air temperature 
(tas) and surface ocean temperature (tos).  

An important difference in the CMIP6 archive as 
compared to CMIP5 is that the sub-daily data is 
not a part of the core delivery of the DECK 
experiment as well as scenario-MIP. Hence, a lot 
of modelling groups chose not to save and upload 
sub-daily data to the Earth System Grid 
Federation (ESGF). Since we need sub-daily data 
for our dynamical downscaling, this criteria plays 
a crucial role for our sub-selection exercise. We 
also would like to flag this as a possible significant 
constraint for CORDEX dynamical downscaling 
experiments. 

At the time when we started the downscaling of 
CMIP6 GCMs in late 2020, very few GCMs had all 
the driving variables to run our downscaling 
simulations. In Table 5.1 we have highlighted the 
list of GCMs with availability of 6-hourly forcing 
fields. 

As an example of how data availability drives 
opportunities, we did consider using data from 

GFDL-CM4, CNRM-CM6-1-HR and HadGEM2-
MM models, but couldn’t access their data on the 
ESGF. Upon separate conversations with the 
modelling groups, we were also told that not all 
scenarios were simulated by these models. 

Based on our dynamical downscaling requirement 
of 6-hourly data for historical (1955-2014), and 3 
SSPs (SSP1-2.6, SSP2-4.5, and SSP5-8.5) for 
the required variables (hus, ps, ta, tos, ua, va) and 
pressure level data for at least 5hPa, the latest 
availability as of June 2023 is shown in Table 5.1. 
The table shows all models running ScenarioMIP 
and the ones highlighted are the ones having 6-
hourly data for the required variables. As can be 
seen from the table, only 10 models have all 4 
experiments covered. GCM data needs for V3 
dynamical downscaling may not be very different 
from that of the CORDEX community, and the 
availability of downscaling data from only a very 
few models shows that this could be a major 
constraint for the CORDEX community as well. It 
is to be noted that in CMIP5 there were many 
more GCMs with 6-hourly data needed for 
dynamical downscaling. 

 

5.8 Future climate change spread 
 
One additional dimension for sub-selection is to 
ensure that the smaller ensemble of GCMs still 
cover as much as possible the projected range of 
future climate change, especially for temperature 
and rainfall. Figure 5.28 shows the end-century 
change in rainfall and temperature over SEA from 
34 CMIP6 GCMs under SSP5-8.5. 

 
 



 

 
Figure 5.28: End-century (2080-2099) change (relative to 1995-2014) in rainfall and temperature over SEA from 34 CMIP6 
GCMs under SSP5-8.5 (red stars denote the chosen models in our study). 
 
 

5.9 Model Sub-selection 
 
Considering all the information from the previous 
sections, we selected initially 8 models for further 
consideration based on 5.3-5.8. For our sub-
selection process, we did not use any combined 
ranking system across all skills, rather, we mainly 
excluded very deficient looking models along the 
Tier-1 (climate variables) and Tier-2 (climate 
processes) skill metrics.  

Combined with desired spread in ECS, 
independence and spread of future climates, we 
landed on a set of 8 models. The final list of sub-
selected models are shown in Table 5.4 with the 
ones that made it to the final list of models that 

made available all the forcing data we need for 
downscaling highlighted in dark grey. 

While we were sub-selecting the CMIP6 GCMs 
the various modelling groups were still in the 
process of uploading data to the ESGF, so we 
included some of the models that also had partial 
data and were expected to upload all of it in time. 
Finally, because of data availability, 3 (CNRM-
CM6-1, GFDL-CM4, and HadGEM3-GC31-LL) 
out of the 8 models could not be used. Since we 
had planned to downscale at least 6 GCMs, we 
replaced HadGEM3-GC31-LL with a similar 
performing model (UKESM1-0-LL) from the same 
family. 

 



 

Table 5.4: List of sub-selected CMIP6 GCMs for V3 Dynamical Downscaling 

Sub-selected Model ECS Family End-century change over SEA under 

SSP5-8.5 scenario 

   Precipitation 

(mm/day) 

Temperature  

(oC) 

ACCESS-CM2 4.66 9 0.06 4.08 

CNRM-CM6-1 4.90 3 0.35 3.99 

EC-EARTH3 4.26 4 0.40 3.62 

GFDL-CM4 3.89 Independent 0.34 3.20 

HadGEM3-GC31-LL 5.44 9 -0.05 4.21 

MIROC6 2.60 7 0.27 2.52 

MPI-ESM1-2-HR 2.98 8 0.15 2.57 

NorESM2-MM 2.49 2 -0.05 2.93 

  

While we were sub-selecting the CMIP6 GCMs 
the various modelling groups were still in the 
process of uploading data to the ESGF, so we 
included some of the models that also had partial 
data and were expected to upload all of it in time. 
Finally, because of data availability, 3 (CNRM-
CM6-1, GFDL-CM4, and HadGEM3-GC31-LL) 
out of the 8 models could not be used. Since we 
had planned to downscale at least 6 GCMs, we 
replaced HadGEM3-GC31-LL with a similar 
performing model (UKESM1-0-LL) from the same 
family. 

 

5.10 Summary and Discussion 

For the purpose of regional climate change 
projections it is desirable to cover as much as 
possible various sources of uncertainty in order to 
design adaptation options that cover a wider 
range of climate change risks. In regard to 
regional climate change projections, a large 
amount of uncertainty often comes from the 
choice of scenario. It is advisable to either choose 
a low/high (as was done in V2) or a 
low/medium/high set of scenarios. In our case we 
chose a low/medium/high set of scenarios, 
namely, SSP1-2.6, SSP2-4.5, and SSP5-8.5 
(O’Neill et al. 2016). The SSP1-2.6 scenario 
approximately corresponds to the previous 
scenario generation Representative 
Concentration Pathway (RCP) 2.6, and was 
chosen as the low scenario for our study as it was 
designed to have a likely warming within the Paris 

Agreement target of below 2C warming level. 
SSP2-4.5, corresponds to RCP4.5, and was 
chosen as the medium scenario as it was 
designed as a middle-of-the-road scenario 
between the low and high ones. Regarding the 
high scenario, we had the choice of SSP3-7.0 vs 
SSP5-8.5, and we chose the latter because it 
corresponds to RCP8.5 that was used in V2, and 
is also likely to cover the upper end of the scenario 
uncertainty spectrum. Notably, as per the 
CORDEX experiment design for dynamical 
downscaling of CMIP6, SSP3-7.0 and SSP1-2.6 
scenarios were chosen to be downscaled first, 
followed by additional downscaling using the 
SSP2-4.5 scenario and/or the SSP5-8.5 scenario 
based on the availability of computational 
resources.   

A similar dynamical downscaling exercise is 
underway by the CORDEX-SEA community to 
produce high resolution climate change 
projections over SEA. There are several 
similarities and differences between the 2 efforts 
which make them highly complementary. 
Similarities include the choice of GCMs to be 
downscaled, large overlap in the downscaling 
domain and a common future scenario (SSP1-
2.6). Differences include: (1) horizontal resolution 
(our downscaling is conducted at 8 km for SEA 
and 2km for WMC), whereas, most of the 
CORDEX-SEA downscaling will be carried out at 
25 km horizontal resolution, (2) the N-S extent of 
our domains are very similar but our E-W extent is 
larger by around 20 degrees, (3) we use SSP5-
8.5 as the high scenario, whereas CORDEX-SEA 



 

uses SSP3-7.0, and (4) we use SINGV-RCM 
(Prasanna et al. 2023; submitted) and WRF (for a 
subset of the runs carried out using SINGV-RCM 
in order to assess downscaling uncertainty) as the 
downscaling model, whereas, CORDEX-SEA 
uses RegCM and WRF. 

It is to be noted that while our intention was to 
sample as many family of models as feasible 
based on existing literature on model genealogy, 
we decided to have 2 models from one family 
(ACCESS-CM2 and UKESM1-0-LL) for 2 
reasons: (1) the 2 models satisfied all our other 
criteria for model sub-selection, and (2) to analyse 
how similar or different can be the regional 
projections from 2 models of the same family, 
although they have different ocean models. 

It is also to be noted that one of our final models 
that was used for downscaling (UKESM1-0-LL) 
has an ECS of 5.36oC which is beyond the very 
likely range of IPCC AR6 (2oC-5oC). Since we 
think it is important to span the range of ECS, 
provided the other sub-selection criteria are met, 
and the model being a credible GCM from the 
UKMO, we decided to go ahead with it.  

In summary, we evaluated 49 CMIP6 GCMs for 
key climate variables and processes and using 
multiple dimensions of sub-selection we finally 
sub-selected 6 GCMs for dynamical downscaling 
over the 8 km SEA domain to produce the Third 
National Climate Change projections for 
Singapore.
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Appendix 
 
 
A5.1 Evaluations for seasonal rainfall 

 
Figure A5.1: 1995-2014 JJA season mean precipitation (pr) in observation (a,b) and models (c,d). a. FROGS datasets for the 
60N-60S domain. b. similar to a, but for the SEA domain. c. multi-model mean of pr from 48 CMIP6 models for the 60N-60S 
domain. d. similar to c, but for the SEA domain. e. model bias (e.g., multi-model mean from 48 models minus the observational 
mean). Stippled areas indicate the agreement by 70% of models. f. similar to e, but for the SEA domain. 

 



 

 
Figure A5.2: 1995-2014 DJF season mean precipitation (pr) in observation (a,b) and models (c,d). a. FROGS datasets for the 
60N-60S domain. b. similar to a, but for the SEA domain. c. multi-model mean of pr from 48 CMIP6 models for the 60N-60S 
domain. d. similar to c, but for the SEA domain. e. model bias (e.g., multi-model mean from 48 models minus the observational 
mean). Stippled areas indicate the agreement by 70% of models. f. similar to e, but for the SEA domain. 

 


