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11.1 Introduction 

The importance of uncertainty in climate change 
projections and its communication to stakeholders 
is well recognised by the IPCC as can be seen 
from the assessment reports. Uncertainty in 
regional climate change projections further 
cascades to uncertainties in impacts (hydrology, 
agriculture, etc.), and it gives a hard time to the 
decision makers to come up with necessary 
adaptation measures, as the adaptation plans and 
corresponding costs can significantly be affected 
due to these uncertainties. Hence, there are 
efforts by the scientific community to reduce 

uncertainty in climate change projections to the 
extent possible.  

With regard to the communication of uncertainty 
to stakeholders, the IPCC AR6, similar to AR5, 
uses a “calibrated language” in various 
statements published in the reports. The 2 terms 
that are used to communicate uncertainty in the 
IPCC reports are “confidence” and “likelihood”. 
IPCC uses a rather detailed methodology to 
assess and communicate uncertainty as can be 
seen in Figure 11.1 taken from the AR6 WG-I 
report. 

 

 
Figure 11.1: The IPCC AR6 approach for characterizing understanding and uncertainty in assessment findings. This diagram 
illustrates the step-by-step process authors use to evaluate and communicate the state of knowledge in their assessment 
(Mastrandrea et al., 2011). Box 1.1, Fig. 1, IPCC AR6.  
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11.2 Sources of uncertainties in 
Climate Change Projections 

There are 3 distinct sources of uncertainty in 
global climate change projections - (1) internal 
variability uncertainty, (2) model uncertainty, and 
(3) scenario uncertainty (e.g., Hawkins and Sutton 
2009). 

Internal variability uncertainty: As evident from the 
name, this is due to the internal variability or 
natural fluctuations of the climate system that 
arise in the absence of any radiative forcing on the 
earth system. 

Model uncertainty: This is also known as a 
response uncertainty. Each model has its own 
representation of the processes in the climate 
system. As such, different models respond 
differently to the same forcing and hence produce 
somewhat different climate change projections at 
global and regional levels. 

Scenario uncertainty: This is the difference in 
response of a given model that can arise due to 
differences in the external forcing, e.g., 
greenhouse gas emissions under different 
pathways, leading to different responses and 
hence different climate change projections. 

Dynamical downscaling uncertainty: In the case of 
regional climate change projections via dynamical 
downscaling an additional uncertainty factor 
arises that is associated with the different 
downscalers (regional climate models) used for 
downscaling. For example, for a given CMIP6 

GCM and for a given scenario, 2 different regional 
climate models used for dynamical downscaling 
will produce somewhat different regional climate 
change projections. This is called the dynamical 
downscaling uncertainty. 

The relative importance of each of the uncertainty 
factors changes with the time and space scale of 
interest. Hawkins and Sutton (2009) compared the 
roles of internal variability uncertainty, model 
uncertainty, and scenario uncertainty. Their work 
indicates that for time horizons of many decades 
or longer, the dominant sources of uncertainty at 
regional or larger spatial scales are model 
uncertainty and scenario uncertainty. However, 
for time horizons of a decade or two, the dominant 
sources of uncertainty on regional scales are 
model uncertainty and internal variability. In 
general, the importance of internal variability 
increases at smaller spatial scales and shorter 
time scales. 

In Figure 11.2 we have shown the total variance 
and fractional variance of near-surface air 
temperature (tas) from CMIP6 GCMs over the V3 
8 km domain, split into 3 sources of uncertainty, 
i.e., internal variability, model uncertainty, and 
scenario uncertainty, following the methodology of 
Hawkins and Sutton 2009. It can be seen from the 
left panel that the internal variability remains 
almost constant in time, the model uncertainty 
shows a steady increase in time but at a slow rate, 
whereas the scenario uncertainty non-linearly 
increases with time. 

 

 
Figure 11.2: Total and fractional variance of surface air temperature over the V3 8 km domain using CMIP6 GCMs data. 

 

From the right panel, as expected from the 
findings of Hawkins and Sutton (2009), on 

timescales of 1-2 decades the dominant sources 
of uncertainty are internal variability and model 
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uncertainty, whereas on longer timescales 
(beyond 2 decades) scenario uncertainty is the 
dominant mode of uncertainty.   
 

11.3 Methods to constrain uncertainties 

While there are uncertainties in climate changes 
projections, there are methods to reduce the 
range of uncertainty by applying constraints. For 
example, one of the methods that was used to 
constrain the climate change projections in IPCC 
AR6 was the use of emulators. As highlighted in 
Chapter 4 (Section 4.2.1), many CMIP6 models 
exhibit an equilibrium climate sensitivity (ECS) of 
5°C or higher (Zelinka et al., 2020), much higher 
than the upper value of the CMIP5 range of 4.5°C. 
Sherwood et al. (2020) constrained the likely and 
very likely ranges of ECS in CMIP6 models to 
2.5°C - 4.0°C and 2.0°C - 5.0°C, respectively. 
Hence, the IPCC adopted the approach of 
employing an emulator for constraining 
temperature and all parameters scaling with 
temperature, based on the analysis of Sherwood 
et al. (2020). 

There have been studies that have used other 
methods to constrain the uncertainty in climate 
change projections. For example, Tokarska et al. 
(2020) used past warming trends to constrain 
future warming in CMIP6 models. They reported 
that projected future warming is correlated with 
the simulated warming trend during recent 
decades across CMIP5 and CMIP6 models, and 
hence can be used to constrain future warming 
based on consistency with the observed warming. 

Emergent constraint (Hall et al., 2019), defined as 
a statistical relationship, across a model 
ensemble, between a measurable aspect of the 
present-day climate (the predictor) and an aspect 
of future projected climate change (the 
predictand) is another method which is promising 
and being widely researched and used to 
constrain future climate change projections. 

Another alternative method to constrain climate 
change projections is the storyline approach 
discussed in Shepherd et al. (2018). This method, 
although inherently subjective, provides a 
powerful way of interpreting climate change 
projections based on storylines, and either 
accepting or discarding the projected changes 
based on the confidence in the associated 
projected storyline.  

 

11.4 Uncertainty in V3 

The 4 types of uncertainty discussed above are 
also present in the V3 climate change projections 
presented in this report, which we explore further 
in this subsection.  

Scenario uncertainty 

The role of scenario uncertainty is shown in Figure 
11.3. It shows the range (across the 3 SSPs) of 
changes in precipitation (%) and changes in 
temperature (°C) for each of the 2 km simulations 
over Singapore for mid- and end-century. We see 
from the figure that, in general, the scenario 
uncertainty increases in time from mid-century to 
end-century, as expected. However, the actual 
magnitude of scenario uncertainty is model-
dependent. This is because the scenario 
uncertainty is governed by the response of a given 
model to different forcings, and since the 
differences in responses to different forcings is 
dependent on the model the scenario uncertainty 
is also dependent on the model. For example, in 
one of the models the scenario uncertainty in 
precipitation change is as high as 25% during the 
end-century, and similarly the scenario 
uncertainty in temperature projections for one of 
the models during the end-century is as high as 
3.5°C. 
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Figure 11.3: Projected range of precipitation change (%; left panel) and temperature change (oC; right panel) across SSP 
scenarios during mid-century (2040-2059) and end-century (2080-2099) for the five 2 km downscaled simulations over 
Singapore. Each dot represents the difference between the minimum and maximum values (across the 3 SSPs) for the individual 
models. 

 

 

Model uncertainty 

The next source of uncertainty we look at is the 
model uncertainty. Figure 11.4 shows the future 
range of precipitation change and temperature 

change across models during mid-century (2040-
2059) and end-century (2080-2099) under the 3 
SSPs for the five 2 km downscaled simulations 
over Singapore. 

 

 
Figure 11.4: Projected range of precipitation change (%; left panel) and temperature change (oC; right panel) across models 
during mid-century (2040-2059) and end-century (2080-2099) under the 3 SSPs for the five 2 km downscaled simulations over 
Singapore. Each dot represents the difference between the minimum and maximum values (across the 5 models) for the 
individual SSPs. 
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We see from the figure that, in general, the model 
uncertainty increases with time and is higher in the 
end-century as compared to the mid-century. We 
also find that the model uncertainty is highest for 
the SSP5-8.5 scenario. For example, the model 
uncertainty in projected precipitation change over 
Singapore could be as high as 30% under SSP5-
8.5 during the end-century, and that for projected 
temperature change could be as high as 2.2°C 
under SSP5-8.5 during the end-century. 

Dynamical downscaling uncertainty 

Next, we turn to the dynamical downscaling 
uncertainty. Another dynamical downscaling 
model, the Weather and Research Forecasting 
(WRF) model, was used to perform a parallel 
version of a subset of the simulation conducted 
with SINGV-RCM, making use of two global 
models (EC-Earth3 and MPI-ESM1-2-HR) and 
three time periods (historical, SSP2-4.5, and 
SSP5-8.5).  

 

 
Figure 11.5: Comparison of projected change in mean near-surface air temperature over Singapore in the SSP2-4.5 (orange) 
and SSP5-8.5 (deep red) scenarios using SINGV-RCM and WRF downscaled from EC-Earth3 and MPI-ESM1-2-HR for mid and 
end century at 8km resolution.  

 

Figure 11.5 shows the projected percentage 
change of near-surface air temperature over 
Singapore in the SSP2-4.5 (orange) and SSP5-
8.5 (deep red) scenarios using SINGV-RCM and 
WRF downscaled from EC-Earth3 and MPI-
ESM1-2-HR for mid and end century at 8 km 
resolution. Across the scenarios and time periods, 
near-surface air temperature downscaled from 
WRF are generally warmer, with differences within 
~2°C. Note that the uncertainty is a nonlinear 

combination of both the parent GCM and 
downscaler; for example, relative to SINGV-RCM, 
WRF amplifies the warming in Dec-Jan at the end-
of the century for EC-Earth3 much more than it 
does for MPI-ESM1-2-HR. The spread also 
increases in SSP5-8.5 as compared to SSP2-4.5, 
and in many cases in the end-century as 
compared to the mid-century. The results increase 
our confidence in the projection of warming over 
Singapore in the future under the SSP scenarios. 
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Figure 11.6 shows the projected percentage 
change of precipitation over Singapore in the 
SSP2-4.5 (orange) and SSP5-8.5 (deep red) 
scenarios using SINGV-RCM and WRF 
downscaled from EC-Earth3 and MPI-ESM1-2-
HR for mid and end century at 8 km resolution. 
Even when downscaled with forcings from the 
same GCM, RCMs can predict different signs of 
change (e.g., downscaling of EC-Earth3 over 
annual timescales in the end of the century, 
shown by the crosses versus circles). The 
percentage change can be larger for Feb-Mar, 
which is a climatologically dry month. Similarly, 
using two different GCM forcings on the same 
downscaler can give projections of opposing signs 

(e.g., downscaling using WRF over annual 
timescales for SSP5-8.5, as seen by the cross and 
diamonds). It is not obvious whether the spread in 
RCM or spread in GCM contributes more to the 
overall uncertainty. For example, in the end-
century in Feb-Mar under SSP5-8.5, the 
uncertainty from considering the additional 
regional model WRF (circle and cross) is smaller 
than that of considering an additional GCM (circle 
and square), but the opposite is true for its mid-
century counterpart.  Considering the analysis of 
Figure 11.5 and Figure 11.6 reveals that we have 
a high certainty in future warming over Singapore 
as compared to changes in rainfall.  

 
 

 
Figure 11.6: Comparison of projected percentage change of precipitation over Singapore in the SSP2-4.5 (orange) and SSP5-
8.5 (deep red) scenarios using SINGV-RCM and WRF downscaled from EC-Earth3 and MPI-ESM1-2-HR for mid and end 
century at 8km resolution.  

 

Internal variability uncertainty 

As explained in Section 11.2, internal variability is 
inherent within the climate system. As such, in 
addition to being present in GCMs, this variability 
is present within all the downscaling results and 

observed trends shown in this report. By 
presenting climatological averages over twenty 
years, we aim to reduce the impact on variability 
in assessing the potential of changes in the middle 
or end of the century. Nevertheless, decadal 
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variability from the models could still influence the 
results. The role of such variability becomes 
particularly important over small spatial scales, 
such as local changes over Singapore (Chapter 
10). 

 

11.5 Summary 

Future climate projection for Singapore is 
challenging. In particular, Singapore is located in 
between two much larger areas where increases 
in rainfall are projected on one side and decreases 
on the other for most of the seasons. This is 
related to the complex and seasonally-varying 
regional climate drivers in the SEA region, and 
surely makes projections of rainfall change 
particularly challenging for Singapore, especially 
given its small size.  

The contents of this chapter aim to provide 
guidance to the users of the bias-adjusted 
projections over Singapore (Chapter 10) about the 
reliability and robustness of the projections, given 
the uncertainties inherent in climate projections.  

Our analysis shows that the scenario uncertainty 
increases in time from mid-century to end-century, 
while also being model-dependent. For example, 
in one of the models the scenario uncertainty in 
precipitation change is as high as 25% during the 
end-century, and similarly the scenario 

uncertainty in temperature projections for one of 
the models during the end-century is as high as 
3.5°C. 

Model uncertainty also increases with time and is 
larger in the end-century as compared to the mid-
century. Model uncertainty is also largest for the 
SSP5-8.5 scenario. For example, the model 
uncertainty under SSP5-8.5 during the end-
century can be as high as 30% for projected 
precipitation change and 2.2°C for projected 
temperature change.  

Dynamical downscaling uncertainty can affect the 
change in sign of precipitation change for 
individual models, and lead to temperature 
changes within ~2°C. 

Given the presence of the sources of uncertainty 
described in Section 11.2, we are more confident 
in the projections that remain qualitatively similar 
despite the time period/scenario/model used in 
the analysis. We are also more confident in 
changes that are consistent with the changes in 
the regional and global climate system, especially 
if they are supported by theoretical understanding. 

For the purpose of using the model results, the 
mean or median of the multi-model ensemble 
could be used to provide an indication of the 
change. However, for robust decision making, it 
may be useful to consider the full multi-model 
range of the variables of interest.  
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