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1.1 Background to Singapore’s 
Third National Climate Change 
Study 

The challenge of climate change presents an 
existential threat to both humanity and the Earth's 
ecosystems, underscoring the need for a strategic 
understanding and a proactive response to 
mitigate its associated risks. Small island nations 
like Singapore, confronted with increasing 
evidence of climate change impacts, urgently 
need reliable and actionable information to 
effectively prepare for and adapt to the 
multifaceted risks associated with this global 
challenge. 

Every 6-7 years, the Intergovernmental Panel on 
Climate Change (IPCC) issues Assessment 
Reports that provide current insights into the 
scientific, technical, and socio-economic aspects 
of climate change. The latest IPCC assessment 
cycle, featuring reports on the Physical Science 
Basis, Impacts, Adaptation and Vulnerability, and 
Mitigation of Climate Change, along with a 
Synthesis Report and a Climate Change Atlas, 
contributes valuable information on a global scale. 
However, these reports, primarily based on global 
climate models, lack the granularity needed for 
regional and local assessments and adaptation 
planning. 

Building on the foundation of Singapore's Second 
National Climate Change Study (V2), the Third 
National Climate Change Study (V3) addresses 
this gap by providing high-resolution climate 
change projections for Singapore and the broader 
Southeast Asian region. By dynamically 
downscaling global climate model simulations, the 
study offers a new dataset crucial for informed 
adaptation planning, enhancing Singapore's 
resilience to the adverse effects of climate 
change. 

Led by the National Environment Agency (NEA), 
and with the Meteorological Service Singapore's 
Centre for Climate Research Singapore (CCRS) 
at the forefront of developing high-resolution 
downscaled climate projections, V3 contributes to 
Singapore's national endeavors by enhancing 
understanding of climate change effects and 

aiding in the formulation of comprehensive, long-
term plans for national resilience. 

The V3 study comprises a Stakeholder Report 
and an accompanying Technical Report. The 
Stakeholder Report provides a succinct overview 
of V3's key findings, tailored for diverse 
audiences. This includes Singaporean 
Government agencies and Southeast Asian 
counterparts involved in downstream impact 
studies, policy development, and adaptation 
planning. It is also designed for researchers in 
local Institutes of Higher Learning and beyond, 
along with the general public interested in climate 
change and sustainability. For a comprehensive 
understanding, the Technical Report delves into 
V3's methodology, global and regional projections 
derived from Global Climate Models (GCMs), the 
evaluation and sub-selection of GCMs, the setup 
of the SINGV-RCM, assessment of downscaled 
simulations, bias adjustment, regional climate 
change projections, and sea level projections over 
Singapore and the broader region. Please see 
Chapter 2 Introduction for more details. 

Moreover, to enhance the interpretation and 
comprehension of the V3 study, individuals can 
explore specific data visualizations from V3 at 
https://www.mss-int.sg/V3-climate-projections.  

 

1.2 Recent Climate Trends in 
Singapore 

The global mean temperature for 2022 exceeded 
the 1850–1900 average by 1.15°C. In Singapore, 
the average daily mean temperature has shown a 
steady increase, rising at a rate of 0.24°C per 
decade over the past four decades since 1984. 
This temperature rise persists despite substantial 
year-to-year variability, influenced by large-scale 
climate drivers like the El Niño-Southern 
Oscillation (ENSO). El Niño events generally lead 
to higher annual mean temperatures across 
Singapore, while La Niña events tend to moderate 
them. The natural modulations contribute to 
varying warming rates across decades, e.g., an 
increase of 0.52°C per decade between 1984 and 
1993, contrasting with an increase of 0.07°C per 
decade between 2013 and 2022. Alongside the 
mean temperature increase, observations in 
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Singapore also indicate an upward trend in daily 
minimum and maximum temperatures. 

In terms of rainfall trends, Singapore's annual 
rainfall has experienced a slight upward trend of 
83mm per decade from 1980 to 2022. However, 
this trend is overshadowed by significant year-to-
year variations. It's essential to emphasize that 
the ENSO has a significant influence on 
Singapore's rainfall patterns, causing increased 
rainfall during La Niña years and reduced rainfall 
during El Niño years. Singapore is known for its 
humid tropical rainforest climate. Between 1985 
and 2020, there has been a slight decline in the 
annual mean near-surface relative humidity in 
Singapore.  

Situated between two monsoon systems, 
Singapore experiences the Southwest Monsoon 
from June to September and the Northeast 
Monsoon from November to early March. The 
average wind speeds are generally mild over 
Singapore, with even lighter and variable winds 
during the inter-monsoon period. The annual 
mean wind speed exhibits inter-annual and multi-
decadal variability. In recent decades, 
observations suggest a potential increasing trend, 
which could be part of the multi-decadal variability. 

Please see Chapter 3 Observed Climate Change 
for more details. 

 

1.3 Methodology to Produce 
Climate Change Projections for 
Singapore and Southeast Asia 

The initial stage in crafting high-resolution climate 
change projections for Singapore involved the 
assessment and sub-selection of 49 global 
climate models employed in the IPCC AR6 for 
dynamical downscaling. This evaluation adhered 
to established practices within the international 
scientific community engaged in dynamical 
downscaling, led by the World Climate Research 
Programme (WCRP) Coordinated Regional 
Downscaling Experiment (CORDEX) community. 
A thorough examination of key climate variables, 
including temperature, rainfall, winds, relative 
humidity, and sea level pressure, was conducted. 
Relevant climate drivers for the Maritime 
Continent (MC), such as monsoons, El-Nino 

Southern Oscillation (ENSO) and its 
teleconnections, Indian Ocean Dipole (IOD), 
Northeast Monsoon surges, and Madden-Julian 
Oscillation (MJO), were also considered. This 
rigorous evaluation aimed to identify and flag any 
models deemed implausible for climate change 
projections in the region. 

The sub-selection process extends beyond global 
model evaluation. Additional dimensions for sub-
selection encompass (i) availability of relevant 6-
hourly data to drive the regional climate model, (ii) 
coverage of a broad spectrum of model families, 
(iii) inclusion of a diverse range of climate 
sensitivities, and (iv) representation of a 
comprehensive range of future outcomes from the 
global models. Please see Chapter 5 GCM 
Evaluation and Sub-selection for more details. 

The regional climate model chosen for dynamical 
downscaling was the SINGapore Variable 
resolution model (SINGV), re-configured from a 
numerical weather prediction model to operate in 
a climate mode. This conversion exemplifies a 
seamless modeling framework, allowing the same 
system to be employed for both numerical 
weather prediction (hours to days) and climate 
change projections (decades). To ensure 
successful configuration as a regional climate 
model, the SINGV model underwent 
customization for climate mode through multiple 
sensitivity studies at different resolutions and 
domain sizes over the MC. For further details, 
please refer to Chapter 6 SINGV-RCM. 

V3 downscaling simulations include one historical 
simulation driven by the latest ERA5 reanalysis 
and multiple simulations driven by sub-selected 
CMIP6 GCMs. In total, V3 carried out dynamical 
downscaling from 6 GCMs for the historical period 
(1955-2014) and the future (2015-2099) under 3 
IPCC AR6 global warming scenarios (Shared 
Socioeconomic Pathway 1-2.6, SSP2-4.5, and 
SSP5-8.5) at 8km horizontal resolution over the 
Southeast Asia (SEA) domain. Additional high-
resolution simulations at 2km horizontal resolution 
were carried out over the western MC domain, 
which encompassed the period of 1995-2014 and 
the same 3 SSP scenarios, utilizing 5 GCMs for 
two 20-year time slices in the future (2040-2059 
and 2080-2099).  
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Our investigation has demonstrated that high-
resolution regional climate model (RCM) 
downscaling simulations, conducted at both 8km 
and 2km resolutions, contribute value across 
various aspects when compared to coarse 
resolution Global Climate Models (GCMs). The 
SINGV-RCM downscaling consistently aligns with 
the parent driving model, faithfully tracking the 
long-term trends and variability of the parent 
model. Notably, the downscaled simulations 
accurately replicate crucial meteorological 
parameters, including precipitation, temperature, 
relative humidity, and wind speed, across different 
time scales from diurnal to seasonal and their 
annual cycles. 

The variables simulated by the SINGV-RCM 
exhibit strong agreement with high-resolution 
regional observations, such as ground-based 
stations and satellite merged products. This 
alignment underscores the RCM's skill in 
representing historical climate conditions. 
Additionally, the RCM demonstrates abilities in 
capturing regional climate drivers, such as remote 
ENSO-teleconnection, and processes like cold 
surges specific to this region. 

For thorough evaluation, the RCM simulations 
over Singapore are analyzed at each land grid 
using high-resolution observations. Notably, the 
2km resolution simulations show improvements 
over the 8km resolution simulations and provide a 
more detailed representation of the climate within 
the island nation. Further details are available in 
Chapter 7 Evaluation of Dynamically Downscaled 
Simulations. 

One more thing worth highlighting here is the HPC 
aspect of the V3 study. Approximately 2000 model 
years of dynamical downscaling simulations at 8 
km resolution, covering nearly the entire 
Southeast Asia (SEA), and ~750 model years at 2 
km resolution focusing on the western Maritime 
Continent, were conducted for both current and 
future climates as part of V3. Due to computing 
resource constraints and V3 timelines, the 
simulations were distributed across three High-
Performance Computing (HPC) systems on two 
continents: NSCC Koppen and A2A in Singapore, 
and NCI Gadi in Australia. Throughout the 
simulation period, computing and storage 
requirements fluctuated, reaching peak 

computing levels exceeding ~35 million core-
hours per month and storage capacities reaching 
~12 PB. Furthermore, approximately 4 PB of data 
was efficiently transferred from Australia to 
Singapore at peak speeds of ~1 Gbps, facilitated 
by NSCC and SingAREN. The HPC journey for V3 
simulations was both challenging and 
adventurous, demanding significant efforts from 
CCRS and dedicated time for resource and 
simulation management. Through collaborative 
teamwork within MSS/CCRS and support from 
NSCC, NCI, and SingAREN, coupled with the 
diligent efforts of the V3 team at CCRS, 
challenges were successfully navigated, and the 
desired outcomes were achieved, meeting the V3 
delivery timelines. More details are available in 
Chapter 13 High Performance Computing 
Aspects. 

 

1.4 CMIP6-informed Global to 
Regional Climate Projections 

CMIP6 models (utilized in the IPCC AR6), offer a 
comprehensive understanding of climate change 
at both global and regional scales. In contrast to 
their CMIP5 counterparts, CMIP6 models boast 
higher spatial resolution, enhanced model physics 
through improved parameterization schemes, and 
an increased incorporation of earth system 
models featuring carbon cycle and 
biogeochemistry components. Additionally, 
CMIP6 models introduce a socioeconomic 
storyline (SSP1-2.6, SSP2-4.5, SSP3-7.0, and 
SSP5-8.5) in conjunction with radiative forcing 
levels, as opposed to the CMIP5 models' 
Representative Concentration Pathways (RCP) 
2.6, 4.5, 6.0, and 8.5. This inclusion enriches 
future warming scenarios. Consequently, the 
utilization of CMIP6 models enhances confidence 
in projecting future climate variables and 
processes compared to the earlier CMIP5 models. 

The projected global mean surface air 
temperature is expected to rise by 0.4 to 1.0°C 
relative to the period 1995-2014 across most 
scenarios in the near term (2021-2040). 
Additionally, during the same period, land surface 
temperatures are anticipated to increase by at 
least 1.0°C more than ocean temperatures. In the 
near term, land precipitation is projected to 
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increase under both low emission (-0.2 to 4.7%) 
and high emission (0.9 to 12.9%) scenarios, with 
certain regional uncertainties stemming from 
internal variability, model uncertainty, and aerosol 
emission uncertainties. 

Besides mean state variables, tropical climate 
drivers are also expected to undergo warming-
induced changes. Global monsoon precipitation is 
anticipated to increase, despite a reduction in 
circulation strength both in the mid and end 
century. The El Niño-Southern Oscillation (ENSO) 
response to warming remains uncertain across 
different scenarios, but a robust signal of ENSO-
induced precipitation variability is evident over the 
tropical Pacific. Although the frequency of strong 
positive Indian Ocean Dipole (IOD) events is 
expected to rise, the IOD response remains 
uncertain due to the lack of strong evidence and 
dependence on mean state biases in the model. 
In a future warmer climate, the Madden-Julian 
Oscillation (MJO) is projected to intensify, 
accompanied by an increased magnitude of 
associated precipitation. 

For the Southeast Asia (SEA) region, CMIP6 
Global Climate Models (GCMs) indicate a 
temperature increase slightly below the global 
average. Daily mean surface temperatures are 
projected to rise over both land and oceans, with 
a more pronounced land-sea temperature 
contrast in high Equilibrium Climate Sensitivity 
(ECS) models at annual and seasonal time 
scales. During the hot summer periods in March 
to May (MAM) and June to August (JJA) seasons 
over the northern parts of SEA, temperatures are 
expected to increase by up to 5°C or more. Mean 
annual rainfall projections indicate increased 
values over most land regions of SEA, with higher 
increases over northern SEA, Borneo, and New 
Guinea. Under the high warming scenario (SSP5-
8.5), there is a strong ENSO-rainfall signal over 
the MC in JJA with strong drier conditions during 
El Niño and strong wetter conditions during La 
Niña. 

The frequency of Northeast monsoon surges is 
anticipated to increase to 19% (from the current 
18%), resulting in heightened rainfall over Borneo, 
Sulawesi, south Sumatra, New Guinea, and east 
of the Philippines. Conversely, there is a 
projection of reduced rainfall around the Maluku 

islands. The combined impacts of climate change, 
land subsidence, and regional human activities 
contribute to a higher level of confidence in the 
escalation of floods and prolonged inundation 
across the Mekong Delta region. 

In summary, the CMIP6 future projections indicate 
increased global and regional surface air 
temperatures, enhanced global precipitation 
(regional differences; wet gets wetter, dry gets 
drier), increased monsoon land precipitation, and 
enhanced ENSO-rainfall teleconnections. In 
addition to the mean changes, extremes in 
temperature and rainfall are projected to increase, 
especially under SSP5-8.5 over many parts of the 
globe, including SEA. Please see Chapter 4 From 
Global to Regional Projections – insights from 
CMIP6 for more details. 

 

1.5 Regional Climate Change 
Projections for Southeast Asia 

In the V3 study, we utilized SINGV-RCM driven by 
selected CMIP6 GCMs to assess climate changes 
across Southeast Asia, examining key variables 
such as temperature, rainfall, and large-scale 
drivers crucial to the region. 

In terms of rainfall, projections indicate an 
increase in annual-mean domain-average rainfall 
over Southeast Asia towards the end of the 21st 
century. The multi-model mean projects a higher 
end-century change compared to mid-century 
changes for each scenario, but the inter-model 
spread is notable. Such slight increase in the 
annual mean rises from spatially complex 
changes across individual seasons. For instance, 
substantial rainfall increases occur in the northern 
Maritime Continent throughout all seasons, while 
western and central equatorial Maritime Continent 
experiences drying, particularly during dry months 
(JJA). Extreme rainfall events, measured by 
maximum 1-day rainfall (RX1day) and (RX5day), 
are expected to rise across most Southeast Asian 
land regions during all seasons.  

As for temperature, the multi-model mean 
indicates projected temperature increases of 
3.3°C over the Southeast Asian domain by the 
end of the century under the high emission 
scenario. Land areas in Southeast Asia are 
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expected to experience even higher warming, 
reaching 4°C by the century's end, consistent with 
the understanding that land regions warm more 
than ocean regions. Changes in annual maximum 
(tasmax) and annual minimum near-surface air 
temperatures are qualitatively similar to those in 
annual mean temperature. Temperature 
extremes, represented by changes in the 
seasonal maximum of daily maximum 
temperatures (TXx), show consistent warming 
trends over the Southeast Asian domain, with 
larger increases over land areas, exceeding 6oC 
in parts of Indochina during JJA and SON. The 
seasonal minimum of daily minimum 
temperatures (TNn) also increases across much 
of the domain. 

Regarding relative humidity (hurs), seasonal 
mean near-surface relative humidity changes are 
generally small or negative over land (ranging 
from 0 to -1.9%), while increases are observed 
over oceans. The largest decreases are evident in 
JJA, particularly over Indochina, Borneo, and New 
Guinea. This reduction in land relative humidity 
aligns with existing studies and is accompanied by 
enhanced land warming. 

Examining regional climate drivers, a weakening 
of the monsoonal flow with anomalous easterlies 
over the Indian Ocean is observed. Notably, JJA 
experiences a strengthening of the monsoon flow 
over Indochina. Changes in the northeast 
monsoon surge align with the parent GCMs in 
terms of increased frequency and anomalous 
easterlies over Indochina and west of Sumatra, as 
well as anomalous westerlies north of New 
Guinea. Note that, the magnitude of rainfall 
changes in the downscaled simulations are 
enhanced relative to the parent GCMs, with slight 
differences in the spatial distribution of rainfall.  

CMIP6 GCMs indicate that the negative ENSO 
teleconnection over Southeast Asia (SEA) is 
expected to expand geographically and intensify 
with warming. Specifically, SEA is projected to 
experience heightened aridity during El Niño 
events, leading to prolonged drying and drought 
conditions. Conversely, La Niña events are 
anticipated to bring increased precipitation, 
resulting in more heightened flood risks. The zonal 
dipole pattern of the ENSO teleconnection across 
the Indo-Pacific Ocean is projected to shift 

eastward. These anticipated changes align 
consistently between RCMs and their parent 
GCMs, and the downscaled models offer 
additional fine-scale spatial details. These climate 
driver projections carry significant implications for 
water resource management and agriculture in 
the region. The potential for prolonged droughts 
during El Niño events and intensified flooding 
during La Niña events underscores the 
importance of adapting water resource strategies 
and agricultural practices to effectively respond to 
these anticipated shifts in climate patterns. 

It is important to emphasize the added value of 
future projections derived from high-resolution 
RCMs compared to coarse-resolution driving 
GCMs. Note that GCMs often exhibit smoothed 
spatial changes due to their coarse resolutions. In 
contrast, high-resolution (8km) RCMs consistently 
reproduce large-scale changes similar to driving 
GCMs but offer a more detailed representation of 
high rainfall variability in the high mountain areas 
of Java and Papua New Guinea. These 
enhancements are crucial for advancing regional 
climate impact studies, and further details can be 
found in Chapter 8 Regional Climate Change 
Projections. 

 

1.6 High-resolution Climate Change 
Projections for Singapore 

Our high-resolution regional climate model (RCM) 
simulations, conducted at resolutions of 8km and 
2km, have demonstrated excellent performance 
over the Maritime Continent. However, these high-
resolution RCMs exhibit minor model biases when 
compared to local observations specifically within 
Singapore. To ensure that we provide appropriate 
simulation data for local climate change impact 
studies, we have conducted bias adjustments for 
key climate variables. By applying bias 
adjustments to these selected variables, we 
aligned the RCM simulations more closely with the 
observed local climate conditions in Singapore. 
The bias adjustments conducted in our study have 
demonstrated very good performance to remove 
the model biases in the historical period. We 
consider bias adjustment to be a crucial step in the 
post-processing of regional downscaling 
simulations, as it significantly improves the 
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realism and accuracy of the RCM outputs. The 
successful implementation of bias adjustments 
enhances our confidence in the climate 
projections and their suitability for assessing and 
addressing the impacts of climate change in 
Singapore. For further details, please refer to 
Chapter 9 Bias adjustments. 

Singapore is projected to experience varying 
levels of temperature increase under low to high 
emission scenarios. V3 projections show that the 
daily mean temperatures over Singapore could 
increase by 0.6°C - 5.0°C by the end of the 
century and the daily maximum temperature could 
increase by 0.5°C - 5.3°C. Notably, the estimated 
upper limits of potential temperature increase in 
V3 are higher than V2. Furthermore, the daily 
mean Wet Bulb Globe Temperature (WBGT) - a 
key indicator for assessing heat stress - is 
expected to increase by 0.5°C - 4.3°C. The daily 
maximum WBGT could increase by 0.5°C - 4.0°C. 
This shift implies an increase in the frequency of 
days experiencing high heat stress, with an 
estimated 54 to 326 days featuring WBGT 
exceeding 33°C for an hour or more during 
daylight hours. 

Singapore rainfall undergoes a transition from wet 
to dry across Monsoon seasons. The rainy 
months are from November to January, which 
marks the wet phase of the Northeast Monsoon 
season. On the contrary, Singapore is relatively 
dry in the months of June – August, which is the 
dry phase of the Southwest Monsoon. V3 study 
projects diverging changes in Singapore rainfall 
across different seasons. An intensification of 
precipitation is anticipated during the traditionally 
wet months (i.e., “wet gets wetter”) with an 
increase in mean rainfall of up to 58%. 
Conversely, the dry months may experience a 
potential rainfall decrease of up to 42% (i.e., “dry 
gets drier”). 

The projections also indicate a heightened 
likelihood of extreme rainfall events throughout all 
seasons and scenarios, potentially escalating by 
as much as 92% during April and May. 
Additionally, the frequency of dry periods is 
expected to rise, occurring approximately every 
ten months, and extending for a maximum 
duration of around 3 weeks. 

According to V3 projections, the near-surface 
wind speed over Singapore has the potential to 
increase by up to 20% during the Northeast (Dec-
Mar) and Southwest monsoon (Jun-Sep) 
seasons. Additionally, in the intermonsoon 
months of April and May, under the high 
emissions scenario, there could be an increase of 
up to 11% by the end of the century. 

For further details, please refer to Chapter 10 
Singapore Climate Change Projections. 

 

1.7 Past and Future Sea Level Change 
in Singapore and Southeast Asia 

In conjunction with the downscaling simulations, 
another aspect of the V3 study centers on 
observed changes and projections of mean sea 
level around Singapore and the region. Sea level 
projections in V3 are derived from the state-of-the-
art IPCC AR6 projections. For Singapore, V3 
employed the IPCC AR6 methodology to generate 
relative mean sea level projections using 
corrected tide-gauge data to produce the most 
updated vertical land movement projections.  

Relative mean sea level has been rising at a rate 
of 3.6 mm/yr off Singapore (average rate across 
four tide-gauges with rate varies between 3.27 - 
3.77 mm/yr) for the 1993 - 2021 period. The 
contemporary mass redistribution between the 
oceans and the land, which refers to ocean’s 
exchange of water between ice sheets, glaciers, 
and other terrestrial water storages, is the main 
driver of observed sea-level rise around 
Singapore during the last three decades (~70% of 
the total rise). On the other hand, the ocean 
internal mass redistribution dominates the 
sterodynamic sea-level rise (~23% of the total 
rise) with a very weak contribution from local steric 
changes. These findings hence indicate that 
nearly 90% of the observed sea-level rise off 
Singapore is “mass-driven” and highlights the 
importance of having a bottom pressure recorder 
in the shelf region of Singapore to assist future 
studies and monitoring of mean sea-level rise. 

By the year 2100, Singapore is expected to 
undergo a relative mean sea level rise of 0.45 ± 
0.03 m under the SSP1-2.6 scenario, 0.57 ± 0.04 
m under SSP2-4.5, and 0.79 ± 0.04 m under 
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SSP5-8.5. These are median values across six 
locations in Singapore. In the high emission 
scenario (SSP5-8.5), particularly at Sultan Shoal, 
Singapore may face a relative sea-level rise of up 
to 1.15m by 2100. 

Looking further into the future, by the year 2150, 
the projected rise in relative sea level is estimated 
at 0.72 ± 0.05 m under SSP1-2.6, 0.95 ± 0.06 m 
under SSP2-4.5, and 1.37 ± 0.06 m under SSP5-
8.5. These represent the average estimates of 
median values at six different locations in 
Singapore. In particular, at Sultan Shoal, the 
relative sea level could likely reach up to 2.12 m 
under SSP5-8.5 by 2150. Additional information is 
available in Chapter 12 Sea Level Projections. 

 

1.8 Science Communications on 
Climate Changes and Uncertainty 

Projecting future climate changes for Singapore 
presents a unique set of challenges. Located in 
between two significantly larger regions where 
opposing trends in rainfall are projected for most 
seasons, Singapore faces the intricate and 
seasonally variable influences of regional climate 
drivers within the Southeast Asia (SEA) region. 
The city-state's small size further complicates the 
task of predicting changes in rainfall, adding to the 
complexity. 

Recognizing the inherent uncertainties in climate 
projections, the V3 study endeavors to offer 
valuable insights to users relying on bias-adjusted 
projections for Singapore, emphasizing the 
reliability and robustness of the projections. 
Through our analysis, we observe an escalation in 
scenario uncertainty over time, particularly from 
mid-century to end-century. Additionally, this 
uncertainty is contingent on the chosen climate 
model. For instance, in a specific model, the 
scenario uncertainty in precipitation change over 
Singapore can be as high as 25% during the end-
century, and similarly the scenario uncertainty in 
temperature projections during the end-century 
can be as high as 3.5°C. 

Model uncertainty follows a similar trajectory, 
amplifying over time and exhibiting greater 
variability in the end-century compared to the mid-
century. Model uncertainty is highest for the 

SSP5-8.5 scenario. For Singapore during the end-
century, the model uncertainty in projected 
precipitation change under SSP5-8.5 could be as 
high as 30%, and that for projected temperature 
change could be as high as 2.2°C. Dynamical 
downscaling also introduces uncertainty, 
influencing the sign of precipitation change for 
individual models and contributing to temperature 
variations within approximately 2°C. More 
discussions are available in Chapter 11 
Uncertainty Quantification.  

Despite these multiple sources of uncertainty, our 
confidence is anchored in projections that 
demonstrate robustness across varying time 
periods, scenarios, and models employed in the 
analysis. Greater assurance is also placed in 
projections that align consistently between 
regional and global climate models, especially 
when supported by theoretical understanding. 

In the utilization of V3 results, opting for the mean 
or median of the multi-model ensemble can 
provide an indicative measure of change. 
However, for decision-making that prioritizes 
robustness, it is advisable to consider the 
complete multi-model range of the variables of 
interest. This comprehensive approach ensures a 
more nuanced and thorough understanding of the 
potential climate shifts in Singapore's future. 
Additional information on science communication 
can be found in Chapter 14 V3 Comms. 
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2.1 Climate Change Governance 
in Singapore 
 
The release of the IPCC 6th Assessment Report 
in 2021/22 provided further strong evidence on 
the state of the science around climate change, 
from basic science, impacts, adaptation to 
mitigation (IPCC 2021, 2022a, 2022b). While 
there is a strong focus on the global picture, many 
of the conclusions can be translated directly to the 
various regions. The United Nations Director 
General Antonio Guterres spoke about ‘Code Red 
for humanity’ following the release of the first AR6 
report in 2021 and some examples of these 
conclusions also relevant for our region are: 

Recent changes in the climate are widespread, 
rapid, and intensifying, and unprecedented in 
thousands of years. Unless there are immediate, 
rapid, and large-scale reductions in greenhouse 
gas emissions, limiting warming to 1.5°C will be 
beyond reach.  

It is indisputable that human activities are causing 
climate change, making extreme climate events, 
including heat waves, heavy rainfall, and 
droughts, more frequent and severe. 

Climate change is already affecting every region 
on Earth, in multiple ways. The changes we 
experience will increase with further warming. 
There’s no going back from some changes in the 
climate system… 

At the release of the second AR6 report on 
Impacts, Vulnerability and Adaptation in 2022, 
Hoesung Lee, Chair of the IPCC, concluded “The 
report is a dire warning about the consequences 
of inaction. It shows that climate change is a grave 
& mounting threat to our wellbeing and to a 
healthy planet.” 

Global warming has caused dangerous and 
widespread disruption in nature and climate 
change is affecting the lives of billions of people 
despite efforts to adapt (IPCC, 2022a). Also, 
impacts are magnified in cities where more than 
half of the world’s population lives. Climate risks 
are now regarded as higher even at lower 
temperatures – and likely to happen sooner & with 

greater intensity. One of the key conclusions of 
the WG-II report from AR6 is: “The Science is 
clear. We have a rapidly narrowing window of 
opportunity to secure a sustainable & liveable 
future.” (IPCC WG-II Press Release (2022): Press 
release | Climate Change 2022: Impacts, 
Adaptation and Vulnerability (ipcc.ch)). 

While climate resilience development is already 
challenging at current global warming levels, 
Singapore has been committed to enhancing its 
resilience through multiple pathways. The Energy 
& Climate Policy Division (ECPD) under the 
Ministry of Sustainability and the Environment, 
Government of Singapore, oversees issues such 
as energy efficiency, renewable energy, climate 
science and adaptation. Some key aspects of 
Singapore’s plans for climate resilience include 
(1) enhancement of knowledge and expertise on 
climate change, (2) coastal protection, (3) water 
resource management, and (4) drainage and 
flood prevention. 

In addition to building climate resilience through 
active adaptation planning and implementation, 
Singapore also has strong climate change 
mitigation ambitions. Singapore has committed to 
achieve net zero emissions by 2050 by continuing 
to find innovative ways to accelerate the low-
carbon transition for industry, economy and 
society through four key thrusts: 

1. Catalysing business transformation; 
2. Investing in low-carbon technologies; 
3. Pursuing effective international 

cooperation; and 
4. Adopting low-carbon practices 

The Singapore Green Plan 2030 is a whole-of-
nation movement to advance Singapore’s 
national agenda on sustainable development. It 
charts ambitious and concrete targets over the 
next 10 years, strengthening Singapore’s 
commitments under the UN’s 2030 Sustainable 
Development Agenda and Paris Agreement, and 
positioning it to achieve its long-term net zero 
emissions aspiration by 2050. 

Figure 2.1 shows the committees and working 
groups addressing Singapore’s climate change 
related issues. The Inter-Ministerial Committee on 

https://www.ipcc.ch/report/ar6/wg2/resources/press/press-release/
https://www.ipcc.ch/report/ar6/wg2/resources/press/press-release/
https://www.ipcc.ch/report/ar6/wg2/resources/press/press-release/
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Climate Change (IMCCC) enhances whole – of – 
government coordination on climate change 
policies to ensure that Singapore is prepared for 
the impacts of climate change. Established in 
2007, IMCCC is chaired by Mr Teo Chee Hean, 
Senior Minister and Coordinating Minister for 
National Security. The IMCCC is supported by an 
Executive Committee (Exco) comprising the 
permanent secretaries of the respective 
Ministries. The IMCCC Exco oversees the work of 
the Long-Term Emissions and Mitigation Working 
Group (LWG), Resilience Working Group (RWG), 
Sustainability Working Group (SWG), Green 
Economy Working Group (GEWG) and 
Communications and Engagement Working 
Group (CEWG). 
 

 
Figure 2.1: Climate Change Governance in Singapore (from 
NCCS, 2023). 

 
Singapore’s National Climate Change Secretariat 
(NCCS) was established on 1 July 2010 under the 
Prime Minister’s Office (PMO) to develop and 
implement Singapore’s domestic and 
international policies and strategies to tackle 
climate change. NCCS is part of the Strategy 
Group, which supports the Prime Minister and his 
Cabinet to establish priorities and strengthen 
strategic alignment across the Government. The 
inclusion of NCCS enhances strategy-making and 
planning on vital issues that span multiple 
Government ministries and agencies. 

NCCS’ areas of responsibility are to: 

• facilitate efforts to mitigate carbon emissions in 
all sectors; 

• help Singapore adapt to the effects of climate 
change; 

• harness economic and green growth 
opportunities arising from climate change; 

• encourage public awareness and promote 
action on climate change; 

The Resilience Working Group (RWG) studies 
Singapore’s vulnerability to the effects of climate 
change and develops long-term plans that ensure 
the nation’s resilience to future environmental 
changes. The Long-Term Emissions and 
Mitigation Working Group (LWG) develops plans 
to reduce Singapore’s long-term emissions. LWG 
examines mitigation options, and identifies the 
capabilities, infrastructure and policies needed for 
long-term emissions reduction. The Sustainability 
Working Group (SWG) develops the national 
sustainability agenda to strengthen Singapore’s 
resource resilience and addresses emerging and 
cross-cutting issues on sustainability. The Green 
Economy Working Group (GEWG) coordinates 
and enables the growth of Singapore’s green 
economy, to seize new economic opportunities in 
sustainability and create good jobs for 
Singaporeans. Communications and 
Engagement Working Group (CEWG) establishes 
communications priorities, to achieve greater 
whole-of-government coordination in climate 
change communications and engagement efforts, 
and to build consensus on Singapore’s climate 
change plans and targets. 
 
The Centre for Climate Research Singapore 
(CCRS) was launched in 2013 as a government 
research center to help address some of the key 
questions for the Singapore Government on 
tropical weather and climate variability and 
change and their impacts to Singapore’s 
adaptation and policy planning. In 2018, CCRS 
was tasked to coordinate the National Sea Level 
Program to address key gaps in sea-     level 
science. At the same time, initial plans were 
drafted for the Third National Climate Change 
Study (V3). Since the delivery of the results from 
the Second National Climate Change Study (V2) 
in 2015, the Singapore government has been 
relying on CCRS to continue to deliver important 
information on future climate change topics as 
they are relevant for Singapore and the wider 
Southeast Asia (SEA) region. In July 2022, the 
Climate Impact Science Research (CISR) 
Programme was launched to better understand 
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the long-term impact of climate change on 
Singapore. The S$23.5 million CISR Programme, 
managed by CCRS, will focus on five key priority 
areas – sea level rise; water resource and flood 
management; biodiversity and food security; 
human health and energy; and cross-cutting 
research to bridge science-policy translation. 
 

2.2 Introduction to the V3 study 
 
V3 is Singapore’s Third National Climate Change 
Study and builds on Singapore’s Second National 
Climate Change Study (V2, Marzin et al. 2015). 
Although V2 was commissioned by Singapore’s 
National Environment Agency (NEA) to the Met 
Office Hadley Centre in the UK, the involvement 
of CCRS scientists in the co-production of V2 
significantly helped in taking the leap forward to 
V3 which is produced entirely in-house by CCRS. 
Various experiences ranging from stakeholder 
engagement, model sub-selection, conducting 
dynamical downscaling simulations, analysis of 
past, present and future climate, bias adjustment, 
writing of the V2 Stakeholder and Technical 
reports, and data dissemination, provided the 
necessary exposure and confidence to CCRS 
scientists to be able to make V3 an in-house 
production. 

Stakeholder engagement has been an important 
part of the V3 production process, through two       
annual workshops conducted by CCRS’ Climate 
Science Research Programme Office (CSRPO) in 
November 2020 and January 2022, and various 
ad-hoc engagements throughout the year. CCRS 
has also been working closely with stakeholders 
through working groups and task forces (e.g. with 
the Public Utilities Board and the Singapore Food 
Agency) that were established to deliver science 
that is readily usable by our stakeholders. 

The use of SINGV-RCM (adapted version of the 
SINGV NWP model operationally used by 
CCRS/MSS) for the production of V3 has been an 
important outcome of the SINGV project (Huang 
et al., 2019) named after the five-year 
collaborative project between the UKMO and 
MSS to develop a convective-scale NWP system 
for Singapore based on the UKV model of the UK 
Met Office. 

At the time V3 was planned, Singapore was yet to 
have a supercomputer to match the computing 
and storage needs of V3 simulations. Based on 
stakeholder needs, Singapore’s National 
Supercomputing Centre (NSCC) was in the 
process of upgrading their HPC ASPIRE-1 to 
ASPIRE-2A (A2A) which is around 10 times more 
powerful than its predecessor. This upgrade was 
able to match the needs of V3 and finally a large 
fraction of the downscaling was conducted on 
A2A, and the simulations were able to be 
completed for timely delivery.         

V3 aimed at building the next generation of 
climate projections for a climate-resilient 
Singapore. Singapore recognises the need to 
meet the challenges posed by climate change 
with actions based on robust science. To further 
advance our understanding of tropical climate 
variability and change and its implications for 
Singapore and the Southeast Asia region, CCRS 
is carrying out V3 to produce high-resolution 
future climate projections under various global 
warming scenarios that are actionable and of use 
to policymakers. 

The key deliverables of V3 include past and 
future high-resolution climate data over 
Singapore and SEA region, the V3 Stakeholder 
Report, this Technical Report, communication 
and outreach materials such as infographics and 
videos, the V3 Data Sharing and Visualisation 
Portal, and peer-reviewed scientific publications. 
The outputs of V3 will not only form the basis of 
various impact assessment and adaptation 
studies for various Singapore Government 
Stakeholder agencies, but they will also underpin 
key areas of research supported by the Climate 
Science Research Programme Office (CSRPO) 
at CCRS, such as sea-     level change, water 
resources, human health, energy, biodiversity, 
and food security. Details on the workflow of V3 
are discussed in Section 2.4. 
 

2.3 Building on Current and Past 
Science Excellence 
 
The planning and design of V3 very much 
leveraged from lessons learned in the past, 
especially the previous V2 project, delivered in 



4 

 

2015 (Marzin et al. 2015). V2 consisted of two 
phases. The objective of the first phase was to 
produce high     -resolution climate change 
projections relevant to Singapore, and that of the 
second phase was to carry out vulnerability 
assessment to various sectors by using the high-
resolution climate change projections from Phase 
one of the study. Phase one of the V2 study was 
commissioned by Singapore’s National 
Environment Agency (NEA) and was undertaken 
by the Met Office Hadley Centre in the UK jointly 
with scientists from CCRS and included important 
contributions from the National Oceanography 
Centre, Liverpool (NOC), and the Australian 

Commonwealth Scientific and Industrial 
Research Organisation (CSIRO) for the sea level 
projections. The previous generation Global 
Climate Models (GCMs) used for IPCC AR5 were 
used for V2 (from the 5th phase of the World 
Climate Research Programme's (WCRP) 
Coupled Model Intercomparison Project, or 
CMIP5 GCMs), whereas V3 uses the latest and 
most advanced GCMs that underpin the latest 
IPCC AR6 reports. These new GCMs (from the 
6th phase of CMIP, or CMIP6 GCMs) have been 
assessed to provide more accurate simulations of 
the global climate. Key improvements in V3 over 
V2 are summarized in Table 2.1 below. 

 
Table 2.1: Key improvements in V3 over V2 

 V2 (2015) V3 (2023) 

Global Model CMIP5 CMIP6 [latest IPCC models] 

Regional Model 
UK Met Office 
HadGEM3-RA 

SINGV-RCM [NEW, CCRS in-house] 

Future Scenarios RCP4.5, RCP8.5 
SSP1-2.6, SSP2-4.5, SSP5-8.5 

[latest IPCC AR6 and more scenarios] 

Spatial Resolution 12km 8km and 2km [higher resolution] 

Temporal Resolution of Rainfall Daily 
12min@8km and 10min@2km 

[higher resolution] 

Domain Size Partially covers SEA 
8km domain covers almost entire SEA and is 3 times 

the V2 domain. [full SEA coverage] 

Bias Adjustment 
Simple Quantile 

Mapping  
Trend-preserving Quantile Mapping used in ISIMIP3. 

[more sophisticated method] 

Assessment of Dynamical 
Downscaling Uncertainty 

No Yes [added uncertainty assessment] 

 

 

2.4 Stages of V3 
 
The V3 study consisted of various stages with 
well-defined objectives and deliverables attached 

to each of them, as shown in Figure 2.2. Each of 
the stages and the key components of work for 
each of them have been described in detail in the 
following paragraphs. 
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Figure 2.2: V3 Project flow chart. 

 
The first stage of the study consisted of two parts, 
while one part focused on the stakeholder 
engagement with various Singapore Government 
agencies which are a part of the RWG and will be 
either directly or indirectly using the data and 
products coming out of V3, the other focused on 
planning the study and incorporating the 
stakeholder inputs into the plans. CSRPO 
organized the first V3 Stakeholder Engagement 
Workshop in November 2020, which was 
attended by around 100 participants from 20 
Singapore Government agencies. Inputs provided 
by the agencies at the workshop were 
incorporated into the overall planning of V3. For 
example, some climate variables such as 
incoming solar radiation at the surface which were 
initially not a part of the V3 data sharing plan were 
later included based on stakeholder request. 
 
The second stage of the study focused on sub-
selecting the tentative list of CMIP6 GCMs that 
were to be dynamically downscaled to 8km and 
2km resolutions for the historical period (1955-
2014) and future (2015-2099) for the 3 global 
warming scenarios used in IPCC AR6, namely, 
SSP1-2.6 (low challenges to mitigation and 
adaptation), SSP2-4.5 (medium challenges to 
mitigation and adaptation), and SSP5-8.5 (high 
challenges to mitigation, low challenges to 
adaptation). In order to carry out sub-selection we 
followed standard practices suggested by the 
Coordinated Regional Climate Downscaling 

Experiment (CORDEX; e.g. Gutowski et al. 2016) 
of the World Climate Research Program. Thus, 
the sub-selected GCMs should: (1) span the 
range of GCM projections of temperature and 
precipitation over SEA, (2) perform satisfactorily 
in the historical climate, (3) span the range of 
model diversity in terms of genealogy (e.g. Knutti 
et al. 2013), and (4) have 6-hourly lateral 
boundary conditions (LBCs) available to drive the 
regional climate model. In addition to the 
aforementioned criteria, we also make use of 
expert judgment to discard models that are unable 
to simulate important aspects of regional climate 
over Southeast Asia (SEA). Based on the above 
criteria, we finalized the following CMIP6 GCMs 
for downscaling: ACCESS-CM2 (Australia), EC-
Earth3 (Europe), MIROC6 (Japan), MPI-ESM1-2-
HR (Germany), NorESM2-MM (Norway), and 
UKESM1-0-LL (UK). 
 
The third and fourth stages of the study focused 
on dynamically downscaling the coarse resolution 
GCM data (~100km grid spacing) to 8km and 2km 
resolutions, respectively. Generally, the latest 
GCMs have a resolution of 75–250 km, which 
means that Earth’s atmosphere is divided into grid 
cells that are 75–250 km along each side. In each 
grid cell, climate information, such as 
temperature, humidity and topography, has only a 
single value. At the coarse resolution of GCMs, 
Singapore is not represented as being a separate 
island because it is smaller than the size of one 
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grid cell. Most climate change impacts (especially 
those resulting from extreme events) take place 
at regional and/or local scale. Due to the coarse 
resolution of GCMs, they cannot be used to 
understand details of climate processes occurring 
over small features (e.g. buildings, hills) at more 
modest regional and local scales. For scientists to 

understand climate change and its impacts at 
regional and local scales in order to inform climate 
change adaptation, downscaling GCMs using a 
higher-resolution regional climate model (RCM) to 
obtain more details is necessary. The dynamical 
downscaling design for V3 is shown in Figure 2.3 
below.  

 

 

Figure 2.3: The dynamical downscaling design for V3. 

 

The third stage of the study focused on 
dynamically downscaling ERA5 and the 6 sub-
selected GCMs for the historical and future from 
their native global model resolution (in the range 
of 75km to 250km) to 8 km horizontal resolution 
over the SEA domain (shown in Figure 2.3) using 
the Singapore Variable Resolution - Regional 
Climate Model (SINGV-RCM). 

SINGV-RCM is an adapted version of SINGV, 
which is the operational numerical weather 
prediction model used at CCRS and has 
undergone comprehensive evaluation over 
Singapore and SEA, and hence provides us 
confidence for it to be used for long-term climate 

change projections. For details of the model and 
configuration please see Chapter 6. 

Major sub-components of stage three included (i) 
development of SINGV-RCM from SINGV which 
was done on the CCRS HPC system Athena, (ii) 
porting and testing of SINGV-RCM on the 
National Supercomputing Centre (NSCC) HPC 
system (Koppen), (iii) creation of the ancillary 
fields such as Land Use and Land Cover (LULC), 
topography, etc., (iv) downloading hundreds of 
Terabytes (TBs) of 6-hourly GCM forcing data 
from the Earth System Grid Federation (ESGF) to 
Koppen, (v) downloading similar big data files 
from the European Reanalysis Project 5 (ERA5) 
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from the Copernicus Data Server (vi) generating 
the lateral boundary conditions and the sea 
surface temperature, and finally (vii) running the 
model that also includes troubleshooting and 
regular housekeeping.  The simulation details are 
shown in Table 2.2. 
 
Table 2.2: 8 km Dynamical Downscaling Simulations 

 Length of 8km 
simulations/scenarios 

ERA5 1 x 36 years (1979-2014) 

CMIP6 GCMs  
for historical 

6 x 60 years (1955-2014) 

CMIP6 GCMs  
for future 

6 x 85 years (2015-2099) 

Number of future 
scenarios 

3  
(SSP1-2.6, SSP2-4.5, SSP5-8.5) 

Total number of 
years 

~2000 

 
Table 2.3: 2 km Dynamical Downscaling Simulations 

 Length of 2km 
simulations/scenarios 

ERA5 1 x 20yrs (1995-2014) 

CMIP6 GCMs 
for historical 

5 x 20yrs (1995-2014) 

CMIP6 GCMs 
for future 

5 x 40yrs (2040-2059; 2080-
2099) 

Number of 
future scenarios 

3 
(SSP1-2.6, SSP2-4.5, SSP5-8.5) 

Total number of 
years 

~750 

 
The fourth stage of the study focused on further 
downscaling of five out of six GCMs from 8km to 
2km resolution over the western Maritime 
Continent domain covering Singapore, Peninsular 
Malaysia and parts of Indonesia (shown in Figure 
12.3). The simulation details are shown in Table 
2.3. Although the 8 km simulations were carried 
out for longer time periods (60 years for the 
historical and 85 years for the future), the 2km 

simulations, being significantly more 
computationally expensive were run for 20-year 
time slices for the historical (1995-2014), mid-
century (2040-2059) and end-century (2080-
2099). 

The fifth stage of the study focused on observed 
sea-level rise and sea-level projections and  was 
carried out in parallel while the dynamical 
downscaling of atmospheric climate variables 
was ongoing. The sea-level projections for 
Singapore did not involve regional ocean 
downscaling but were mainly derived through 
synthesizing available sea-level projections from 
the Framework for Assessing Changes to Sea-
level (FACTS; Kopp et al, 2023), which  also 
served as the basis for the IPCC AR6 sea-level 
projections. The site-specific (at tide-gauge 
locations) projections from FACTS were 
evaluated and assessed in Singapore’s context 
by comparing projections with historical sea-level 
rise estimated at Singapore’s tide-gauge stations. 
For instance, by correcting the tide-gauge datum 
shift and updating the local VLM (Vertical Land 
Movements) at tide-gauge stations, V3 provides 
an updated set of relative sea-level rise 
projections for Singapore. The report also 
provides an overview of the sea-level drivers, 
observed sea-level rise in the Southeast      Asian 
region over the last three decades and a detailed 
discussion on the local VLM in Singapore 
(Chapter 12).   

The sixth and final stage of the study focused on 
data processing, analysis, report writing, 
manuscript writing for scientific journals, design, 
content creation and testing of the V3-DSVP web 
portal, and production of communication 
materials in the form of brochures and videos. 
Almost 10 PetaBytes (PBs) of data was 
processed from raw model outputs to 
standardized datasets that are compliant with 
CMIP and CORDEX standards. 

Beyond undertaking the downscaling simulations, 
some of the key post-downscaling Milestones of 
the V3 Study include: 

Data processing: The processing of the data 
was carried out using an in-house climate toolbox 
that was developed for this purpose. One of the 
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major steps in data processing was the bias 
adjustment of the downscaled data over 
Singapore, using an advanced method from the 
ISIMIP3. As a part of bias adjustment, an in-house 
daily gridded rainfall dataset over Singapore was 
developed from rain gauge observations by using 
the kriging method at 2km and 8km resolutions. 

Analysis: Analysis of the results comprised of 
both historical evaluation and future climate 
change projections of dynamically downscaled 
data at 8 km and 2 km resolutions for key climate 
variables (rainfall, temperature, winds, and 
humidity), and climate drivers (monsoon, ENSO 
teleconnections, cold surges, and weather 
regimes). The sea level analysis presented 
findings on observed and projected sea-level 
change in Singapore and its surrounding regions. 

Report writing: Two V3 reports were written - 
Report for Stakeholders and the Technical 
Report. The Stakeholder Report provides key 
messages of the V3 study and is designed for the 
Stakeholder agencies, policymakers, and the 
public, whereas the Technical Report spanning 
14 chapters is designed to provide more technical 
details and would be useful for agencies 
interested in more in-depth information, 
researchers from Singapore Institutes of Higher 
Learning ( IHLs), and regional as well as 
international researchers. 

Journal Manuscripts: While the primary 
objective of V3 is to produce high-resolution 
climate change projections over Singapore and 
SEA to assist vulnerability assessment and 
adaptation planning, it also aims to improve our 
understanding of the drivers of climate variability 
and change over the region. New scientific 
insights developed from the analysis of high-
resolution downscaled model outputs will be 
reported in peer-reviewed scientific journals as 
our contribution to the scientific literature on 
climate variability and change over the region. 

V3-DSVP: In order to share data, figures, reports, 
and various communication materials with 
Stakeholder agencies, researchers and the 
public, we will be making all this available through 
a data sharing and visualization portal (DSVP). 
There will be an interim portal which will be used 

to share everything mentioned above other than 
data that will be launched together with the V3 
public release, whereas, the final portal will be 
more advanced and will have the capability to 
host data as well as have interactive data 
analytics capability for advanced users that will be 
tentatively operational in late 2024. The design 
document along with all the contents of the two 
web portals have been developed in-house at 
CCRS, whereas the software development of the 
portal is outsourced. 

Communication materials: Brochures, videos 
and infographics to communicate various aspects 
of V3 are developed by CCRS and the MSS 
Business and Strategy Division. Topics for the 
brochures and videos include: (1) introduction to 
V3, (2) dynamical downscaling, (3) sea level 
projections, (4) climate extremes, (5) using 
climate change projections in risk assessments, 
(6) probabilistic climate change projections, (7) 
weather and climate drivers of Singapore, and (8) 
application-ready datasets. 
 

2.5 Outline of the V3 Technical 
Report 
 
The V3 Technical Report is an in-depth 
description of all the components of the V3 
project, as well as highlighting the key results from 
our analysis. The report consists of 14 chapters; 
the initial chapters will provide details on 
historically observed changes in Singapore’s 
climate and the process going from global climate 
change analysis (as in the recent IPCC AR6 
report) to a regional and then local approach 
applied in V3. 

Following on, an evaluation and analysis of the 
regional and local downscaling is presented. This 
includes chapters on both bias correction and 
uncertainty assessment. 

As a separate chapter, emphasizing the 
importance but also the fact that the methodology 
is different, we present the new sea level 
projections for Singapore based on IPCC AR6 
methodology. 
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Finally, we give an overview of two important 
project efforts crucial for the success overall: first, 
the extensive work on HPC to undertake 

dynamical downscaling and second, the science 
communication effort to disseminate the 
information locally and regionally. 
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3.1 Introduction 
 
There have been two key reports published 
recently providing important information on global 
and regional observed climate changes. First, the 
Sixth Assessment Report (AR6) of the 
Intergovernmental Panel on Climate Change 
(IPCC) notes that many of the changes observed 
in the climate are unprecedented in thousands of 
years and have already set in motion changes 
such as sea level rise that are irreversible over 
hundreds to thousands of years (often referred to 
as the locked-in climate change).  

Secondly, the World Meteorological Organization 
(WMO) published its annual state of the global 
climate report based on a network of observing 
systems spread across the world which are 
maintained by various organisations, with the 
National Meteorological and Hydrological 
Services playing a key role in this effort. Some of 
the highlight statements from the WMO Report for 
the year 2022 are: 

• The global mean temperature in 2022 was 
1.15 [1.02–1.28] °C above the 1850–1900 
average. The years 2015 to 2022 were the 
eight warmest in the 173-year instrumental 
record. The year 2022 was the fifth or sixth 
warmest year on record, despite ongoing La 
Niña conditions. 

• The year 2022 marked the third consecutive 
year of La Niña conditions, an episode which 
has only occurred three times in the past 50 
years. 

• Despite continuing La Niña conditions, 58% of 
the ocean surface experienced at least one 
marine heatwave during 2022. 

• Global mean sea level continued to rise in 
2022, reaching a new record high for the 
satellite altimeter record (1993–2022). The 
rate of global mean sea level rise has doubled 
between the first decade of the satellite record 
(1993–2002, 2.27 mm per year) and the last 
(2013–2022, 4.62 mm per year). 

Most relevant for Singapore, the Meteorological 
Service Singapore (MSS) publishes its Annual 
Climate Assessment Report (ACAR) each year 
on 23rd March, celebrated as the World 
Meteorological Day, which is an annual 
assessment of Singapore’s climate. Some of the 
highlight statements from the latest ACAR (ACAR 
2022) for the year 2022 are: 

• 2022 was Singapore’s sixth wettest year since 
1980 with an average annual total rainfall of 
3012 mm. This is nearly 19% higher than the 
long-term 1991 – 2020 average. Rainfall for 
most months was above average, with October 
2022 recording the highest October total 
rainfall in the last four decades. 

• Despite the high rainfall, Singapore’s annual 
mean temperature in 2022 was the tenth 
highest since temperature records began in 
1929, tied with five other years. 

 

3.1.1 Climate Monitoring over Singapore 
 
MSS has a network of meteorological observing 
stations, which includes manned as well as 
automated stations that provide real-time 
observations across Singapore (Figure 3.1). MSS 
currently operates a network of five manned 
observation stations, one upper air observatory 
and around 100 automatic weather stations. All 
the automatic weather stations measure rainfall, 
and more than one-fifth measure other 
meteorological variables, including temperature, 
relative humidity, pressure, and wind. This 
observation network serves as the primary source 
of climate data for this report. 

The manned observation station at Changi is 
MSS’s designated climate station (see Figure 
3.2). The climate station, first located at Outram in 
1869, has moved several times over the years 
due to changes in local land use before moving to 
its current site at Changi. The climate station 
serves as the reference station where its records 
are used for tracking the national long-term 
climate trends. The oldest climate station records 
are for monthly rainfall (starting from 1869) and 
temperature (starting from 1929, with a break 
from 1942 to 1947 due to World War II). 



 

 

 
 

 
 
Figure 3.1: Network of automated weather stations (top), 
and manned weather stations (bottom). 
 
 

 
Figure 3.2: Changi climate station. 

 
 

 

Figure 3.3: Upper Air Observatory 
 
The installation of the automatic weather station 
network since 2009 greatly expanded the 
coverage of weather observations across 
Singapore. Prior to this, there were around 40 
manual rainfall stations and just a few 
temperature stations in Singapore. For the 
purpose of analysing long-term climate trends 
and establishing climatological averages, only 
stations with continuous long-term (at least 30 
years) records can be used. 
 
Singapore is located deep within the tropics, 
where wind and atmospheric conditions evolve 
rapidly. The twice-daily soundings provide the 
main source of complete upper-air information to 
support operations. In addition to operational 
purposes, the observation records from the 
station can also be useful for monitoring long-term 
upper air conditions in the equatorial tropics, as 
the records extend back many decades to the 
1950s (see Figure 3.3). 

MSS also operates two weather radars, an S-
band radar located at Changi and a C-band radar 
located at Seletar airport, to monitor the 
development of weather systems covering a 
radius of up to 480 km. 

In addition to the atmospheric monitoring, 
Singapore also monitors its sea levels using tide 
gauges. To the best of our current knowledge, 
Singapore has 19 tide gauges owned and 
maintained by the Maritime & Port Authority of 
Singapore (MPA; see Figure 3.4).  

Network of Automated Weather Stations 



 

 

 
Figure 3.4: Location of the 19 tide gauges around Singapore. Tide-gauge at offshore island, Horsburgh Lighthouse, not shown 

here. 

 

3.1.2 Importance of high-quality observations 
 
High temporal and spatial resolution long-term 
observations which have undergone rigorous 
quality control are essential for monitoring and 
understanding the past climate, and also for 
validating how well the numerical models simulate 
the important climate variables. This in turn helps 
further model development to improve the 
accuracy of simulations and reliability of future 
projections.  

In addition, high-quality observations play an 
important role in carrying out post-processing of 
model simulations such as bias-adjustment, 
whether they be short to medium-range weather 
forecasts, sub-seasonal to seasonal predictions 
or climate change projections. 
 

3.1.3 General Climate of Singapore and their 
Drivers 
 
Singapore has a tropical climate, which is warm 
and humid, with an abundant total annual rainfall 

of approximately 2490 mm (Hassim & Timbal, 
2019). Generally, the eastern parts of Singapore 
receive less rainfall compared to other parts of the 
island. The climatological annual mean rainfall is 
shown in Figure 3.5 below. The winds are 
generally light but with a diurnal variation due to 
land and sea breezes. 

The temperature variation throughout the year is 
relatively small compared to mid-latitude regions. 
The daily temperature range has a minimum 
usually not falling below 23–25°C during the night, 
and a maximum usually not rising above 31–33°C 
during the day. 

Singapore’s climate is traditionally classified into 
four periods according to the average prevailing 
wind direction: 

1. Northeast Monsoon (December to early 
March) 

2. Inter-monsoon (Late March to May) 
3. Southwest Monsoon (June to September) 
4. Inter-monsoon (October to November) 

https://www.zotero.org/google-docs/?QqU5GP
https://www.zotero.org/google-docs/?QqU5GP


 

 

The northeast monsoon season has a wet phase 
during Dec-Jan and a dry phase during Feb-Mar, 
whereas there is no strong intraseasonal variation 
during the southwest monsoon season. The 
transitions between the monsoon seasons occur 
gradually, generally over a period of two months 
(the inter-monsoon periods). The winds during the 
inter-monsoon periods are usually light and 
variable in direction. 
 

 
Figure 3.5: Annual rainfall for the 30-year (1991-2020) 
climatological period based on 28 rainfall stations across 
Singapore. 

 
The major weather and climate features are 
influenced by climate drivers operating on 
different temporal and spatial scales, from the 
seasonal migration of the monsoon (i.e., the 
Intertropical Convergence Zone (ITCZ)), and 
other large-scale drivers such as El-Nino 
Southern Oscillation (ENSO), Indian Ocean 
Dipole (IOD), and the Madden-Julian Oscillation 
(MJO), to smaller scale features such as Sumatra 
squalls, the Borneo Vortex and remote influences 
from tropical cyclones (see Figure 3.6).  

These features, sometimes several occurring at 
the same time, affect the regional pattern in 
rainfall, temperature, winds, ocean currents, and 
many other aspects of the climate and the 
environment in general. 

Understanding the large- and small-scale 
features that influence climate variability across 
the Maritime Continent is essential in predicting 
Singapore’s weather and climate as well as 
understanding how the climate may change in the 
future. Such knowledge helps to inform climate 
adaptation planning and preparedness and 
supports resilient development in vulnerable local 
communities. The provision of reliable scientific 

information for decision-making enables more 
effective adaptation planning: an essential 
requirement for securing sustainable 
development in the region. 

The El Niño – Southern Oscillation (ENSO) is 
the major influence on climate variability in the 
western tropical Pacific and Maritime Continent. It 
affects the year-to-year chance of droughts, 
extreme rainfall and floods, tropical cyclones, 
extreme sea levels, and coral bleaching. 

The Intertropical Convergence Zone (ITCZ) is a 
persistent east-west band of converging low-level 
winds, cloudiness, and rainfall stretching across 
the Maritime Continent into the Pacific Ocean 
bringing monsoonal rains. It migrates every year 
southward across the equator and back again, 
affecting most countries across the Maritime 
Continent including Singapore. There are 
interannual variations in the width and strength of 
the ITCZ that can have a large influence on the 
rainfall over the region and over Singapore. For 
example, one of the worst droughts over 
Singapore that happened in February 2014 was 
associated with the narrowing of the ITCZ over 
Singapore (McBride et al., 2015). 

The Indian Ocean Dipole (IOD): Indian Ocean 
sea surface temperatures impact rainfall and 
temperature patterns across the Maritime 
Continent. Warmer than average sea surface 
temperatures can provide more moisture for 
weather systems crossing the region. Sustained 
changes in the difference between sea surface 
temperatures of the tropical western and eastern 
Indian Ocean are known as the Indian Ocean 
Dipole (IOD). The IOD has three phases: neutral, 
positive, and negative. 

The Madden-Julian Oscillation (MJO): MJO 
can be characterised as an eastward moving 
"pulse" of cloud and rainfall near the equator that 
typically takes around 30 to 60 days to circle the 
globe, although the signal of the MJO in the 
tropical atmosphere is not always present. MJO 
effects are most evident over the Indian Ocean 
and the Maritime Continent. Besides influencing 
the region’s wind and bringing more rain, it can 
also bring periods of drier conditions associated 
with its dry or ‘suppressed’ phase. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.6: Climate drivers influencing weather and climate for the region around Singapore. Included are the average position of the Intertropical Convergence Zone (ITCZ) 

in blue indicating the furthest northward and southward extent of the seasonal migration of the regional monsoon system. The green and orange arrows indicate the 

corresponding Northeast and Southwest monsoonal flows. Against the background of warm ocean waters (soft orange colour indicating regions above 28.5°C), the El Niño– 

Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) impact the region's rainfall patterns on seasonal and inter-annual timescales, while the Madden-Julian Oscillation 

(MJO) impacts the region’s rainfall at weekly to monthly timescales. At shorter timescales, Sumatra Squalls, Cold Surges and the Borneo Vortex can be sources of strong 

rainfall events. Further afar, tropical cyclones (TCs) can develop near the ITCZ away from the equator.



 

 

Sumatra Squall Lines: It is an organised line of 
thunderstorm that develops over Sumatra or the 
Strait of Malacca, and typically moves eastward 
towards Singapore under the influence of south-
westerly or westerly winds. It commonly occurs 
during the Southwest Monsoon and Inter-
monsoon periods, and usually affects Singapore 
overnight or in the morning, often bringing strong 
gusty surface winds of 40 to 80 km/h and heavy 
rain lasting from one to two hours. 

Northeast Monsoon Surges: Monsoon surges 
are a key synoptic feature of the boreal winter 
circulation over the Maritime Continent (e.g. 
Chang et al., 2005) and can lead to extreme 
rainfall. During the period December through 
early March, the continental northern Asia 
including Siberia, experiences very low, cold 
temperatures. From time to time, this cold air 
surges southward from Central Asia to the South 
China Sea. This results in a sudden increase in 
north-easterly winds over the South China Sea, 
blowing toward the warm tropics. The sea warms 
and moistens the overlying air, and the winds 
converge to bring widespread rain in the tropics. 

December and January are usually the wettest 
months of the year in Singapore. The few 
widespread moderate to heavy rain spells caused 
by surges of Northeast Monsoon winds contribute 
significantly to the rainfall in these months. A 
typical rain spell generally lasts for a few days. 
The cold surges can also be enhanced by the 
presence of a favourable phase of the MJO (e.g. 
Lim et al., 2017) and might also aid the MJO in its 
passage across the Maritime Continent (Pang et 
al., 2018). 

Borneo Vortex: It typically appears off the north-
western coast of northern Borneo. If a monsoon 
cold surge event coincides with a vortex, 
Singapore can experience enhanced rainfall as 
the convection strengthens over northwest 
Borneo and weakens north of Java. The lifetime 
of the vortex is typically a few days. 

Tropical cyclones (TCs) usually form over large 
bodies of relatively warm water away from the 
equator. Because of the large-scale spatial extent 
of some TCs, they can have a remote impact on 
Singapore’s weather. Generally, tropical cyclones 

occur between 5 and 30 degrees latitude (north), 
and do not form in the equatorial regions because 
the Coriolis effect is negligible near the equator. 
However, the rare occurrence of two colliding 
systems can lead to cyclone development. In 
December 2001, typhoon Vamei formed when 
strong winds from a monsoon surge interacted 
with an intense circulation system in the South 
China Sea. Typhoon Vamei came within 50 km 
northeast of Singapore and brought windy and 
wet conditions to Singapore. 
 

3.2 Observed changes in 
temperature 
 
Historical archives from the National Library of 
Singapore indicate that observations of monthly 
temperature and rainy days in Singapore were 
taken from as far back as 1820 during British 
colonial times by various individuals, the earliest 
of which was by Singapore’s first Resident, 
William Farquhar. However, routine 
measurements for rainfall only began from 1869 
when the practice was formally institutionalised by 
the Medical Department of the Straits 
Settlements, first in places such as  the Convict 
Jail Hospital in Bras Basah, the Convict Prison in 
Outram and later at Kandang Kerbau Hospital 
(Table 3.1).  

The location of the officially designated climate 
station has varied over time following the 
formation of the Malayan Meteorological Service 
– the predecessor to the Meteorological Service 
Singapore – in 1929, beginning with Mount Faber 
in the south of Singapore (Figure 3.7). 
Measurements ceased between 1941 to 1947 
due to World War II; during this period, the climate 
station was located at the Botanic Gardens. The 
climate station was then located at Kallang Airport 
and then at Paya Lebar Airport before its current 
site at Changi in the east of Singapore, where it 
has been since July 1981. 

The official climate station record for monthly 
mean temperature dates back to January 1929 
from Mount Faber (Figure 3.8). However, monthly 
mean temperature observations from Changi 
climate station (derived from daily mean values) 
were only used in the official climate station 



 

 

record from 1984 onwards. Prior to that, between 
1981 to 1984, the monthly mean observations 
from Paya Lebar were still used.  

As the site of the climate station has changed over 
time, we consider the period 1984 – present from 
Changi to constitute the longest and most 
homogeneous climate station record for monthly 
mean temperature. Another weather observation 

station that has long-term daily temperature 
records going back to 1972 is Tengah, situated in 
the west of Singapore (Fig. 3.7). The western 
location of Tengah and its long time series allows 
us to compare how temperatures across the 
island have evolved over time during the common 
overlapping 1984 – 2018 period between the two 
stations. 

 
Table 3.1: Locations of the Climate Station in Singapore and their period of active service. Reproduced from 
www.weather.gov.sg/learn_climate. Only records from Mount Faber, Kallang, Paya Lebar and Changi constitute the official 
climate station record for monthly mean temperature. 

 Period of Service Location of Climate Station 

1 Jan 1860 - Dec 1874 Convict Prison (Outram) 

2 Jan 1875 - Dec 1928 Kandang Kerbau Hospital 

3 Jan 1929 - May 1934 Mount Faber 

4 Jun 1934 - Dec 1941 Kallang 

5 Jan 1942 - Dec 1947 Botanical Gardens 

6 Jan 1948 - Aug 1955 Kallang 

7 Sep 1955 - Dec 1983 Paya Lebar 

8 Jan 1984 - present Changi 

 

 
Figure 3.7: Location of Changi Climate Station and the manned stations at Tengah and Paya Lebar (previous climate station 
from 1955-1984) with long-term observations going back prior 1980. The location of the early climate stations of Singapore (Mt 

http://www.weather.gov.sg/learn_climate


 

 

Faber, 1929-1934) and Kallang Airport (1935-1941, 1948-1955) whose temperature observations are included in the long-term 
climate station record, are marked by the red cross and red diamond, respectively. 
 
 

3.2.1 Mean Temperature 
 
Over the last 39 years since 1984, the average 
daily mean temperature has been steadily rising 
at the climate station, as seen in Figure 3.8. This 
rise in temperature is evident even with the large 
year-to-year variability due to the influence of 
large-scale climate drivers such as the El Niño-
Southern Oscillation (ENSO). El Niño events tend 
to increase annual mean temperatures across 
Singapore, while La Niña events tend to moderate 
them.  

Over the 1984 to 2022 period, the long-term 
warming rate across the two stations are very 
comparable: the mean temperature at the climate 
station has increased at a rate of 0.24°C per 
decade, while Tengah has warmed at a slightly 
higher rate of 0.26°C per decade. The slightly 
higher rate is likely due to the rapid rise in annual 
mean temperature in the last decade (from 2010). 
Both Tengah and Changi exhibit a warming rate 
that is slightly higher than the global mean 
temperature (derived from the Berkeley Earth 
dataset), which shows a warming trend of 0.21°C 
per decade over the 1984 to 2022 period. 

Singapore showed an upward trend of 0.67°C per 
decade in daily mean temperature during 1973-
1992, with a slower rate of increase at 0.17°C per 
decade during 2003-2022. The corresponding 
values for global trends are 0.17°C and 0.22°C 
per decade respectively. The high value of the 
upward trend during 1973-1992 can be attributed 
to rapid urbanisation in Singapore at the time. The 
accompanying effect on temperature is called the 
Urban Heat Island (UHI) effect whereby towns 
and city areas experience much higher 
temperatures and remain warmer than their 
greener surroundings. The effect is most 
noticeable at night when temperatures in more 
built-up environments can be several degrees 
higher than less developed areas surrounded by 
more trees and/or water bodies (ACAR 2022). 

This UHI effect is on top of long-term warming 
trends due to climate change.  

In contrast, the global mean warming rate shows 
an upward trend of 0.17°C per decade and 0.22°C 
per decade for the corresponding periods, largely 
driven by the accelerated warming over the 
northern hemisphere high latitude regions (Arctic 
region amplification) in the recent decades. 

 
 



 

 

 
Figure 3.8: Time series of the local annual mean temperature from the climate station (dotted and solid red lines, for pre-1984 
and from 1984, respectively) and Tengah (green). Also shown is the global mean temperature time series plotted on the right 
secondary axis for comparison. The orange and blue shades denote El Niño and La Niña years from 1980, respectively. 

 

Table 3.2: Decade-by-decade trend analysis for the Climate Station vs. the Berkeley Earth global mean 
(land+ocean) dataset for 1984-2022. 

 Decade-by-decade trends (°C per decade) 

 
Station Data (Singapore Climate 

Station) 
Gridded Data Berkeley Earth 

(land+ocean) 

1984-1993 0.52 0.24 

1993-2002 0.17 0.31 

2003-2012 -0.23 0.07 

2013-2022 0.07 0.27 

 
 

3.2.2 Daily Minimum and Maximum 
Temperatures 
 
Figure 3.9 compares the mean daily minimum 
temperature anomalies between the Tengah 
station, the Changi climate station and the global 
average air temperature over land. The Tengah 
station is situated close to the Tengah River, 
surrounded by the more forested areas of western 
Singapore, while the Changi station is sited near 
the more developed residential parts in eastern 
Singapore and close to the airport’s runway. Over 
the last 50 years (1973 – 2022), the night-time 

minimum temperatures at Changi have warmed 
more rapidly (0.21°C/decade, Figure 3.9a) than 
the location’s daytime maximum temperatures, 
which show no significant trend (0.06°C/decade, 
Figure 3.9b). In contrast, both the night-time low 
and daytime high temperatures at Tengah are 
rising almost in tandem (at 0.14°C/decade and 
0.13°C/decade, respectively; both trends are 
statistically significant at the 5% level). In fact, the 
minimum temperatures at Changi are warming 1.5 
times faster than those at Tengah, and 
comparable to the global land average 
(0.24°C/decade).  



 

 

A consequence of Changi warming much faster 
during the night than it does during the day is that 
we see a significant reduction in its diurnal 
temperature range (DTR) (Figure 3.9c). In 

contrast, the DTR at Tengah exhibits a negligible 
trend since both daytime maximum and night-time 
minimum temperatures show similar warming 
rates there.  

 

      
Figure 3.9: As in Fig. 2.1 but for annual average anomaly of (a) daily minimum and (b) daily maximum compared to the 
corresponding Berkeley Earth Surface Temperature dataset for global land only (black solid line). The diurnal temperature range 
is shown in (c).  The anomalies are calculated relative to the 1981-2010 climatology. Also shown are respective trends (dotted 
lines) for the 1970-2022 period (greyed background). 



 

 

3.2.3 Warm Days 

 

Since the mid-1970s, there has been an overall 

increase in the number of warm days (days when 

the daily maximum temperature exceeds 34℃), as 

can be seen in Figure 3.10. An upward trend was 

observed in some weather stations. For instance, 

the number of warm days recorded at Tengah and 

Seletar stations increased to 1.3 and 0.8 days per 

year between 1972 and 2022, respectively. High 

temperature characteristics vary spatially across 

the island, with Changi station experiencing fewer 

warm days than the other two stations. The fewer 

warm days could be due to the sea breeze effect. 

As Changi is located near the coast, where cooler 

air from the sea replaces the warm air on the 

island, this can reduce the high afternoon 

temperatures and relieve the heat. However, it is 

worth noting that the frequency of warm days 

exceeding 20 days per year in Changi has 

increased.   

 

 

Figure 3.10: The number of warm days, counted as days with maximum daily temperature above 34℃ for Changi (red) and 
Tengah (green) weather stations from 1972 - 2022. 

 

3.3 Observed change in heat stress 

 

According to the IPCC AR6 WG-II report, heat 

stress is a range of conditions when the body 

absorbs excess heat during overexposure to high 

air or water temperatures or thermal radiation. 

Heat stress in humans is exacerbated by a 

detrimental combination of ambient heat, high 

humidity and low wind speed, causing the 

regulation of body temperature to fail. Although 

heat stress can be measured by empirical 

measures such as wet-bulb globe temperature 

(WBGT) and apparent temperature that are 

functions of temperature, humidity, wind and 

sunlight, we use the wet-bulb temperature (WBT) 

as a simple and powerful indicator of heat stress. 

 

In Figure 3.11, we show the annual mean of the 

daily maximum WBT from Changi and Tengah 

weather stations for the period 1985-2020. It can 

be seen from the figure that there is no monotonic 

trend in WBT in either of the stations. There is a 

strong year-to-year variability associated with 



 

 

ENSO. During the last decade, while Changi has 

shown  a decreasing trend, Tengah has shown  an 

increasing trend in WBT, which highlights the 

spatial differences in trends within Singapore. 

 

 
Figure 3.11: Mean wet-bulb temperature at Changi (red) and Tengah (green) weather stations from 1985-2020. 

 

 

3.4 Observed change in rainfall 
 

3.4.1 Annual Rainfall 

 

The annual total rainfall for Singapore has a 

gradually increasing trend of 83 mm per decade 

from 1980 to 2022. However, this trend is not 

statistically significant (see Figure 3.12). Instead, 

years that experienced predominantly La Niña 

conditions (e.g. 2022, 2021, 2011) tend to be 

wetter, while years when El Niño conditions 

developed (e.g. 1982, 1997, 2015) tend to be 

drier. In addition, the first half of the 1980 – 2022 

period saw more El Niño events (5 events 

between 1980 and 2000) compared to the second 

half (3 events between 2002 and 2022) and fewer 

La Niña events (4 events compared to 7 events). 

Future changes in the frequency and intensity of 

ENSO events will likely impact Singapore’s 

rainfall. 

 



 

 

 
Figure 3.12: Time series of the annual total rainfall (solid blue)averaged over 32 stations with long-term records. The 1995-2014 
climatology (2620.1 mm) is shown by the horizontal red dotted line. The black dashed line depicts the upward linear trend (83 
mm/decade), computed using the robust non-parametric Theil-Sen slope estimator. Grey-shaded areas represent the 95% 
confidence interval of the estimated slope. 

 
 

3.4.2 Monthly and seasonal rainfall 

 

For monthly rainfall (Figure 3.13), statistically 

significant upward trends at the 5% level are seen 

only for June (18.4 mm/decade) and April 

(14.6mm/decade). A strong upward trend is also 

seen for November (16.8 mm/decade) but this 

trend is not yet significant at the 5% level. 

 

In contrast, the month of February, the driest 

month of the year climatologically, is showing the 

strongest drying (-6.9 mm/decade), though not yet 

significant. Other months that show slightly 

negative trends are July (-3.2 mm/decade), March 

(-2.3 mm/decade) and May (-1.7 mm/decade). 

 



 

 

 
Figure 3.13: Time series of monthly total rainfall averaged from the 32-station record. The red dashed line depicts the individual 
slope of the trend for each month. Linear trend values, along with the respective p-values are shown for reference. All trends 
are computed using the Mann-Kendall test and the Theil-Sen slope estimator. 

 

Among the four seasons, the second 

intermonsoon period (Oct-Nov) shows the highest 

rate of rainfall increase since 1980 at 24.6 

mm/decade (95% significance level), followed by 

southwest monsoon season (JJAS) at 17.0 

mm/decade as can be seen in Figure. 3.14. The 

wet phase of the northeast monsoon season 

(Dec-Jan) shows an increasing trend of 18.6 

mm/decade (90% significance level), and the dry 

phase of the northeast monsoon (Feb-Mar) shows 

an decreasing trend at -7.8 mm/decade (90% 

significance level).  

  



 

 

 
Figure 3.14: Time series of seasonal total rainfall averaged from the 32-station record. The red dashed line depicts the individual 
slope of the trend for each season. Linear trend values, along with the respective p-values are shown for reference. All trends 
are computed using the Mann-Kendall test and the Theil-Sen slope estimator. 

 

3.4.3 Rainfall Extremes 

 
Singapore’s rainfall climate is largely dominated 
by convective rainfall. This type of rainfall typically 
occurs in the mid-to-late afternoon for much of the 
year. Severe convective storms with very high 
rainfall rates can often lead to flash floods since 
they tend to develop quickly on the order of sub-
hourly to hourly time scales under very unstable 
atmospheric conditions with lots of moisture.  
 
Figure 3.15 presents the annual maximum rainfall 
intensity at 15 min (RX15min), 30 min (RX30min) 
and 60 min (RX60min) durations. Overall, no 
trends have been detected over the last 43 years 

in the extreme rain rates across the three time 
windows, with RX15min showing a small 
insignificant decrease of -1.0 mm/decade and 
RX30min rainfall depicting only a tiny increase of 
0.8 mm/decade. RX60min shows no trend at all (0 
mm/decade). There is also little correlation with 
the ENSO phase on yearly time scales. However, 
RX60min exhibits variability on inter-decadal 
timescales as shown by the period averages, i.e. 
97.3 mm between 1980 and 1994, 111.8 mm 
between 1995 and 2010, and 96.4 mm between 
2011 and 2022. The multi-decadal variability in 
RX60min suggests the possible influence of long-
term climate drivers in the Pacific, such as the 
Inter-decadal Pacific Oscillation (IPO) and 
warrants further investigation. 

 



 

 

 
Figure 3.15: Time series of the annual maximum rainfall intensity at 15 min (RX15min, blue), 30 min (RX30min, orange) and 60 
min (RX60min, green) durations, computed from a set of 23 stations with long-term observations going back to 1980. Numbers 
above the green dotted lines denote the RX60min averages for the corresponding periods mentioned in the text. Note that El 

Niño and La Niña years are highlighted by the light orange and blue vertical bars, respectively. 

 

 

3.5 Observed change in relative humidity 
 
The annual mean near-surface relative humidity 
(RH) from Changi and Tengah stations for 1985-
2020 are shown in Figure 3.16. The figure shows 
that while there was no discernible trend in RH 
during 1985-2010, there has been a decreasing 
trend during the last decade. The observed 

decreasing trend in RH might look counter-
intuitive given the increase in temperature and the 
expected increase in moisture along with 
increased temperatures due to more evaporation. 
Still, the fact is that while the actual moisture 
content of the air may be increasing, the rate of 
increase in temperature is higher than that of 
moisture thus leading to a negative change in RH. 



 

 

      
Figure 3.16: Mean relative humidity at Changi (red) and Tengah (green) weather stations from 1985-2020   

 

 

3.6 Observed change in surface winds 
 
While Singapore does experience a general shift 
in wind direction from the northeast to southwest 
monsoon, the average wind speeds are not large. 
Over the inter monsoon period, the winds are 
even lighter and variable in direction. The annual 
mean wind speed over the two stations (Changi 

and Tengah) shows inter-annual variability as well 
as multi-decadal variability (Fig. 3.17). However, 
in the last couple of decades, the time series 
appears to show an increasing trend, but it could 
also be a part of the multi-decadal variability since 
there was an apparent decreasing trend from 
around 1985 to the late 1990s and early 2000, and 
a reversal after that.  

 



 

 

 
Figure 3.17: Mean wind speed at Changi (red) and Tengah (green) weather stations from 1985-2020   

 

 

3.7 Observed change in northeast monsoon 
surges 
 
Our work on northeast monsoon surges 
predominantly builds on the prior work done at 
CCRS (Lim et al., 2017), which focuses on the 
links between the northeast monsoon surge and 
Southeast Asia rainfall and as such is highly 
relevant for our region. Their study notes that 
monsoon surges contribute up to 40% of the total 
NDJF rainfall and that monsoon surges can 
increase rainfall to more than 50% above the 
mean in the checkmark-shaped region that 
includes Singapore, and potentially even more 
when combined with MJO events (as shown in 
their Figure 7a-c). 
 
Little prior work has been done on quantifying 
changes in northeast monsoon surges over 
Southeast Asia. To understand observed 
changes, we examined studies using other 
definitions relevant to northeast monsoon surges. 
One caveat is that surges in the high latitudes may 
not affect our region. In the classification by 
Abdillah et al. (2020), only 39% of cold air 

outbreaks from the high latitudes impact the South 
China Sea. Nevertheless, as a proxy, we note that 
Juneng and Tanjang (2010) analysed trends in 
cold surge winds from 1962–2007, as measured 
by the DJF seasonal 950 hPa wind averaged over 
110-117.5E and 12.5-15N, and found that the 
easterly component had strengthened 
significantly, but with no significant changes in the 
northerly component. However, this does not 
directly indicate the frequency of strong winds, 
which is used in the definition of a northeast 
monsoon surge over this region (e.g. Lim et al., 
2017). Ting et al. 2009 conducted a study with 
station data from Mainland China from 1960-2008 
and found a long-term decreasing trend (-0.2 
times/decade) in cold surges over northeast 
China. There are signs that this decreasing trend 
extends slightly south of 30°N, but it is weak at 
best. Recently, using a cold surge definition using 
winds over the South China Sea (925 hPa 
meridional winds averaged over 110–117.5°E 
along 15°N) and sea level pressure anomalies 
over East Asia (15–45°N, 100–120°E), Pang et al. 
(2023) find an increase in surge days in 2005-
2020 relative to 1989-2004. 



 

 

Figure 3.18 shows the number of surge days in 
each season using a definition of cold surges 
relevant to the Maritime Continent (Table 3.3) over 
64 years (NDJF seasons starting 1959-2022) 
using ERA5 winds and sea level pressure. We do 
not find any significant (e.g. 90% significance 
level) trend in the frequency of surge days, 
showing the large role of interannual variability. 
There is also no significant difference (e.g. 90% 
significance level) in the number of surge days in 
El Nino or La Nina years as compared to neutral 
years. 
 

Table 3.3: Criteria used for defining cold surges (Lim et al., 
2017). 

Variable Criteria Domain 

Mean 850 hPa 
wind over the 
domain 

Calm or easterly 
Northerly 
Wind speed at least 
0.75 standard 
deviations above the 
long-term NDJF mean 

5-10°N, 
107-115°E 

Max sea level 
pressure over 
the domain 

At least 1020 hPa. 18-22°N, 
105-122°E 

 
 

 
Figure 3.18: Number of surge days in each NDJF season for 1959-2022, using ERA5 winds and sea level pressure. The year 

shown marks the beginning of the season (e.g. 2022 for the 2022-2023 season). El Niño, ENSO-neutral, and La Nina years are 

indicated with the red, black and blue dots, respectively. 

 

3.8 Observed change in sea level 
 
In this report, all material on ocean and sea level 
science is covered in Chapter 12 - Past and 
Future Sea-level Change. 
 

3.9 Summary 
 
The current chapter discusses the observed 
climate change information across Singapore 
using different observational datasets such as 
automated weather stations, manned weather 
stations, and tide gauges. Singapore’s climate 

varies across four different periods: Northeast 
monsoon (December to March), first 
intermonsoon (April to May), southwest monsoon 
(June to September), and second intermonsoon 
(October to November). Different climate drivers 
at various spatial and temporal scales influence 
the Singapore weather and climate features. 
These drivers include seasonal migration of the 
Intertropical Convergence Zone, ENSO, IOD, 
MJO, northeast monsoon surges, Sumatra 
Squalls, Borneo vortex, and remote influences 
from Tropical cyclones. 
 



 

 

Since 1984, the observed daily mean 
temperatures show an increasing trend with a 
large interannual variability. At two distinct 
stations (Changi climate station and Tengah), the 
warming rate between 1984 and 2022 was 0.24°C 
and 0.26°C per decade, respectively (Table 3.4). 
In contrast to the increasing decadal rate of global 
temperatures, the Singapore temperatures 
indicate a decreasing rate from 0.52°C/decade 
(1984-1993) to 0.07°C/decade (2013-2022). At 
the two weather stations, the daily minimum 
temperatures show a statistically significant trend 
of 0.21°C per decade and 0.14°C per decade. 

Additionally, daily maximum temperatures are 
increasing at 0.06°C/decade (insignificant) and 
0.13°C/decade (95% significant). There has been 
an increase in the frequency of extremely warm 
days, with a difference in the number of warm 
days between Singapore’s coastal and inland 
regions of Singapore (Table 3.4). Despite the 
WBT's significant year-to-year variability, neither 
of the two weather stations exhibits a monotonic 
pattern in time. One station exhibits an increasing 
trend, while the other exhibits a declining 
tendency in the WBT. 

 

   Table 3.4: Trends in observed Mean and Extreme Temperatures for two Singapore stations. 

Weather 
station 

Mean 
temperature 

trend 
[°C/decade] 

Daily 
maximum 

temperature 
trend 

[°C/decade] 

Daily 
minimum 

temperature 
trend 

[°C/decade] 

Warm days 
trend 

[days/year] 

WBT 
trend  

Changi 
(Coastal) 

0.24 0.06 0.21 0.8 Decreasing  

Tengah 
(Inland) 

0.26 0.13 0.14 1.3 Increasing 

 

The total annual rainfall over Singapore shows an 
increasing trend of 83 mm per decade from 1980 
to 2022 (Table 3.5). The rainfall over Singapore is 
strongly modulated by ENSO, with La Niña years 
experiencing increased rainfall and El Niño years 
having decreased rainfall. There are also monthly 
and seasonal variations in total rainfalls  across 
Singapore. The months of June and April show 
statistically significant increasing trends of rainfall 
at 18.4 mm/decade and 14.6 mm/decade, 
respectively; November shows an increase of 
16.8 mm/decade (not significant), whereas some 
months (July, March, and May) show a decreasing 
trend (not significant). 
 

Although insignificant, the total seasonal rainfalls 
show an increasing trend across Singapore (Table 
3.5). The SON season has the highest rate of 
rainfall increases since 1980 at 9.5 mm/decade, 
followed by MAM and JJA at 6.8 mm/decade, and 
the DJF shows the least amount of rainfall 
increases by 2.4mm/decade. Rainfall extremes 
measured using annual maximum intensity at 15 
min, 30 min, and 60 min durations show no 
significant trend (Table 3.5). However, the 
RX60min shows strong inter-decadal variability 
with rainfall averages of 97.3 mm between 1980 
and 1994, 111.8 mm between 1995 and 2010, and 
96.4 mm between 2011 and 2022. 

Table 3.5: Trends in Observed Mean annual, monthly, seasonal, and extreme Rainfall, indicating 95% (*) 

and 90% (+) significance level respectively. 

Mean ANNUAL 
rainfall trend 
(mm/decade) 

Mean MONTHLY  
rainfall trend 
(mm/decade) 

Mean SEASONAL 
Rainfall trend 
(mm/decade) 

EXTREME rainfall 
trend (RX15min, 

RX30min, RX60min) 



 

 

83             +4.1 (Dec) 
+7.2 (Jan) 
-6.9 (Feb) 
-2.3 (Mar) 

+14.6 (Apr)* 
-1.7 (May) 

+18.4 (June)* 
-3.2 (July) 
+1.3 (Aug) 
+1.9 (Sep) 
+5.9 (Oct) 

+16.8 (Nov)+ 

+18.6 (DJ) 
-7.8 (FM)+ 
+14.3 (AM) 

          +17.0 (JJAS)+ 
           +24.6 (ON)* 
 

 
 

No significant trend  

 

The annual mean near-surface relative humidity 
(RH) decreases at the two weather stations 
across Singapore for the period 1985-2020.  
 
The annual mean surface wind speed appears to 
have an increasing trend in the last couple of 
decades. However,  it is also possible that it is just 
the multi-decadal variability that we see in the time 
series from the two stations, with decrease in the 
first part of the times series followed by an 
increase. There is no apparent trend in the 
number of northeast monsoon surge days that has 
a large interannual variability. 

 
Overall, we observe an increase in mean surface 
temperatures, daily minimum temperatures, daily 
maximum temperatures, annual mean rainfall 
totals, and seasonal rainfall across Singapore. 
There are spatial variations in the changes of daily 
minimum temperatures, daily maximum 
temperatures, and WBT. Additionally, there is a 
strong relationship between ENSO and 
Singapore's rainfall. There is a decreasing trend 
of the mean surface relative humidity and no 
significant trend in the number of surge days.

 

References 
 
ACAR (2022) - Singapore Annual Climate 

Assessment Report, MSS,  
http://www.weather.gov.sg/wp-
content/uploads/2023/03/ACAR_2022.pdf) 

Lim, T. S., “Cloudy with A Slight Chance of Rain: 
Singapore’s Meteorological Service”, National 
Library of Singapore, 
https://biblioasia.nlb.gov.sg/vol-16/issue-2/jul-
sep-2020/rain, accessed 15 Feb 2023. 

IPCC, 2021: Climate Change 2021: The Physical 
Science Basis. Contribution of Working Group 
I to the Sixth Assessment Report of the 
Intergovernmental Panel on Climate 
Change[Masson-Delmotte, V., P. Zhai, A. 

Pirani, S.L. Connors, C. Péan, S. Berger, N. 
Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. 
Huang, K. Leitzell, E. Lonnoy, J.B.R. 
Matthews, T.K. Maycock, T. Waterfield, O. 
Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge 
University Press, Cambridge, United Kingdom 
and New York, NY, USA, In press, 
doi:10.1017/9781009157896. 

McBride, J. L., Sahany, S., Hassim, M. E. E., 
Nguyen, C. M., Lim, S.-Y., Rahmat, R., & 
Cheong, W.-K. (2015). 25. The 2014 Record 
Dry Spell at Singapore: An Intertropical 
Convergence Zone (ITCZ) Drought. Bulletin of 
the American Meteorological Society, 96(12), 
S126–S130. 

 

 

 

http://www.weather.gov.sg/wp-content/uploads/2023/03/ACAR_2022.pdf
http://www.weather.gov.sg/wp-content/uploads/2023/03/ACAR_2022.pdf
https://biblioasia.nlb.gov.sg/vol-16/issue-2/jul-sep-2020/rain
https://biblioasia.nlb.gov.sg/vol-16/issue-2/jul-sep-2020/rain
https://dx.doi.org/10.1017/9781009157896


 

 

 



 

 

 

© National Environment Agency (NEA) 2024 

All rights reserved. No part of this publication may be reproduced, stored in a 

retrieval system, or transmitted in any form or by any means, electronic or 

mechanical, without the prior permission of the Centre for Climate Research 

Singapore. 

 

 

 

 

 

 

 

 
 

 

 

  

4 
From Global to 

Regional 

Projections – 

Insights from 

CMIP6 

Authors:  
Aurel Florian Moise, Sandeep 
Sahany, Muhammad Eeqmal 

Hassim, Chen Chen, Xin Rong 
Chua, Venkatraman Prasanna, 

Gerald Lim, Pavan Harika 
Raavi, Fei Luo 

 



 

 

4.1 Introduction 
 
Climate change is an existential threat to humans 
and other beings on Earth. Hence it needs to be 
strategically understood and responded to in order 
to effectively manage the various risks associated 
with it. There is increasing evidence of the risks 
associated with climate change, and countries 
globally, especially small island nations like 
Singapore, need reliable and actionable climate 
change information to be prepared well in 
advance to adapt to the multi-faceted risks due to 
climate change. 

Every ~7 years, the Intergovernmental Panel on 
Climate Change (IPCC) publishes Assessment 
Reports (ARs) that provide information about the 
state of scientific, technical and socio-economic 
knowledge on climate change, its impacts and 
future risks, and options for reducing the rate at 
which climate change is taking place. The IPCC, 
in its latest and sixth assessment cycle, produced 
the Working Group-I (WG-I) report on the Physical 
Science Basis (released on 09 August 2021), the 
WG-II report on Impacts, Adaptation and 
Vulnerability (released on 28 February, 2022), the 
WG-III report on Mitigation of Climate Change 
(released on 4 April, 2022 ), and finally the 
Synthesis Report (released on 20 March, 2023). 
The IPCC also produces Special Reports 
intermittently. Also, for the first time, as a part of 
the sixth assessment cycle, IPCC came up with 
the Climate Change Atlas which provides climate 
change information regionally. Although these 
reports are very useful to be informed on the 
global and large-scale climate change, since they 
are produced based on the literature that primarily 
comes from the climate change projections that 
comes from global climate models, they lack 
enough granularity to assess climate change at 
regional/local level and use the information for 
adaptation planning. Hence, as a follow up on 
Singapore’s Second National Climate Change 
Study (V2), Singapore’s Third National Climate 
Change Study (V3) aims to provide high resolution 
climate change projections for Singapore and the 
larger SEA region, by dynamically downscaling 
the coarse resolution global model data, that can 
be readily used for adaptation planning and thus 
help safeguard Singapore from the adverse 
effects of climate change. 

The Third National Climate Change Study (V3) 
was commissioned by the National Environment 
Agency (NEA) under the Resilience Working 
Group (RWG) that studies Singapore’s 
vulnerability to the effects of climate change and 
develops long-term plans that ensure the nation’s 
resilience to future environmental changes. The 
RWG, is one out of the 5 WGs, namely, the Long-
Term Emissions and Mitigation Working Group 
(LWG), Resilience Working Group, Sustainability 
Working Group (SWG), Green Economy Working 
Group (GEWG) and Communications and 
Engagement Working Group (CEWG), overseen 
by the Executive Committee (Exco) of the Inter-
Ministerial Committee on Climate Change 
(IMCCC). The scientific work on producing the 
high-resolution downscaled climate projections 
was undertaken by the Meteorological Service 
Singapore’s Centre for Climate Research 
Singapore (CCRS). 

 

4.2 Key differences between 
CMIP5 and CMIP6 
 
Climate models are considered as key tools for 
scientists to understand the past and present 
climate, predict the weather and climate on 
timescales from hours through years, and project 
climate change for decades and centuries under 
various global warming scenarios developed by 
the socio-economic scientists. These models 
simulate the physics, chemistry and biology of the 
climate system, owing to their numerical and 
scientific complexity, require the most advanced 
supercomputers to carry out long-term 
simulations. 

The development of climate models has been a 
work-in-progress for many decades now, with 
increased spatial resolution, more advanced 
physics, and more advanced numerical methods 
to optimally utilise the advances in 
supercomputers. With numerous      institutions 
developing and running climate models, the 
opportunity arose to coordinate globally 
standardised experiments using these models in 
order to find answers to specific science 
questions, especially on future climate change. 
This is where the Coupled Model Intercomparison 
Project (CMIP; https://www.wcrp-climate.org/ 



 

 

wgcm-cmip) comes in. CMIP is a framework for 
climate model experiments, allowing scientists to 
analyse, validate and improve GCMs in a 
systematic way. The “coupled” term in the name 
means that all the climate models in the project 
are atmosphere-land-ocean-sea ice components 
coupled GCMs. The word “intercomparison” is 
also important, as these coupled models are run 
in the same way as prescribed in the CMIP 
protocols so that the differences in model 
simulations can be directly attributed to the 
differences in the models and not to the 
differences in the way they are run 
(https://www.carbonbrief.org/qa -how- do -
climate-models-work/#cmip). 

CMIP started in 1995 and has been through 
several cycles to date. It comes under the purview 
of the Working Group on Coupled Modelling 
committee, which is part of the World Climate 
Research Programme (WCRP) based at the 
World Meteorological Organization (WMO) in 
Geneva. Literature produced in the form of peer-
reviewed publications using the model simulations 
of CMIP has formed the basis for the IPCC 
assessment reports since the last couple of 
decades. The latest CMIP cycle that concluded 
around 2019 is called CMIP6 and provided most 
of the simulations that underpin the climate 
science assessed in the latest IPCC AR6 reports. 

According to Eyring et al. (2016), with the Grand 
Science Challenges of the World Climate 
Research Programme (WCRP) as its scientific 
backdrop, CMIP6 aims to contribute to addressing 
three broad important science questions: 

1. How does the Earth system respond to 
forcing? 

2. What are the origins and consequences of 
systematic model biases? 

3. How can we assess future climate changes 
given internal climate variability, 
predictability, and uncertainties in scenarios? 

In the following subsections we discuss in more 
detail the three key differences between the 
CMIP5 and CMIP6 models relating to the 
equilibrium climate sensitivity in the two sets of 
models, shared socioeconomic pathways (future 
forcing scenarios used in the CMIP6 Scenario 
Model Intercomparison Project [ScenarioMIP]) 

and the key differences in the modelling systems 
used for simulations in the two generations of 
CMIP. 
 

4.2.1 Equilibrium Climate Sensitivity 
(ECS) 
 
The Equilibrium Climate Sensitivity (ECS) is 
defined as the global- and annual-mean near-
surface air temperature rise that is expected to 
occur eventually, once all the excess heat trapped 
(top-of-atmosphere radiative imbalance) by the 
doubling of CO2 concentration relative to pre-
industrial levels has been distributed evenly down 
into the deep ocean (i.e. when both the 
atmosphere and ocean have reached equilibrium 
with one another - a coupled equilibrium state). 
Many CMIP6 models exhibit an ECS of 5°C or 
higher (Zelinka et al., 2020), much higher than the 
upper value of the CMIP5 range of 4.5°C. 
Historically, the ECS range reported in CMIP has 
not shown much variation. The IPCC First 
Assessment Report (FAR) in 1990 estimated an 
ECS of 1.5 – 4.5°C, and the Second and Third 
Assessment Reports in 1996 and 2001 both were 
consistent with the ECS range reported in FAR. In 
AR4 the lower bond increased to 2.0°C from the 
earlier 1.5°C, but in AR5 this reverted back to the 
original range. All of these IPCC reports have 
been largely consistent with the 1979 US National 
Academies of Sciences Charney Report - the first 
comprehensive global assessment of climate 
change — which estimated ECS at the range of 
1.5 – 4.5°C. 

Given the ECS values have been increasing in 
many of the CMIP6 GCMs, in the Sixth 
Assessment Report (AR6), the IPCC narrowed 
down the Likely Range for ECS based on different 
approaches and considered evidence from 
multiple independent sources such as 
instrumental records, paleoclimate proxies, 
physical principles and also climate models 
(Sherwood et al., 2020). 

Based on the analysis of Sherwood et al. (2020), 
the IPCC adopted the approach of employing an 
emulator for constraining temperature and all 
parameters scaling with temperature. Therefore, 
the IPCC reported uncertainty envelope has been 
significantly reduced (see also Chapter 11). This 



 

 

is one of the key achievements in AR6 which has 
not been widely appreciated, but the efforts on 
narrowing the uncertainty of the range of model 
response to standard CO2 doubling has been 
long-standing and only in AR6 we see a significant 
narrowing. 

The Likely Range now ranges between 2.5 - 
4.0°C, down from what was reported in AR5. The 
IPCC also narrowed the Very Likely Range of 
ECS to be between 2.0 to 5.0°C, down from 1.0 to 
6.0°C (Table 4.1).

 
Table 4.1: The Equilibrium Climate Sensitivity (ECS) ranges, as assessed by the IPCC in AR6, compared with the corresponding 
ranges reported in AR5 

IPCC ECS Assessment AR6 AR5 

Likely Range 2.5 to 4.0 K 1.5 to 4.5 K 

Very Likely Range 2.0 to 5.0 K 1.0 to 6.0 K 

 
 

4.2.2 Shared Socioeconomic 
Pathways (SSPs) 
 
A major difference between CMIP5 and CMIP6 is 
the future global warming scenarios used for 
climate change projections. The CMIP5 used four 
representative concentration pathways (RCPs), 
namely, RCPs 2.6, 4.5, 6.0, and 8.5, defined 
according to the radiative forcing levels reached 
by 2100 but did not include any socioeconomic 
storyline to go alongside them.  

However, CMIP6 uses scenarios rooted in the 
socioeconomic trajectories that lead to 
corresponding radiative forcing levels, termed as 
Shared Socioeconomic Pathways (SSPs) (O’Neill 
et al., 2016). The four Tier-I (key scenarios to be 
used in various MIPs endorsed by CMIP6) 
scenarios include SSP1-2.6, SSP2-4.5, SSP3-
7.0, and SSP5-8.5 (see Section 4.3 for more 
details). These SSPs were created, with varying 
assumptions about human developments 
including: population, urbanization, economic 
growth, technological developments, greenhouse 
gas and aerosol emissions, energy supply and 
demand, land-use changes, etc. The SSPs 
represent alternative storylines about how the 
world might develop over the coming century 
according to different climate policies, mitigation 
or adaptation responses.  

There is a mapping between the SSPs and the 
corresponding RCPs used in CMIP5. The SSPs 
are mapped with the corresponding radiative 

forcing they are compatible with. For example, the 
SSP1 socioeconomic storyline cannot lead to 
8.5W/m2 of radiative forcing in 2100, whereas 
SSP5 can. Hence SSP5-8.5 is a feasible scenario 
while SSP1-8.5 is not. 
 

4.2.3 Models 
 
The CMIP6 model archive consists of models at 
higher spatial resolution, more advanced physical 
parameterizations, and more earth system 
models with carbon cycle and biogeochemistry. 
The number of modelling groups participating in 
CMIP6 has also significantly gone up (49) as 
compared to 28 in CMIP5. This resulted in many 
separate models (>100) with different modelling 
centers contributing with more than one global 
climate model. In CMIP5 this number was less 
than half. Note that not all the different models 
contribute to all the various experiments, e.g. for 
the ScenarioMIP we saw only 49 models. This is 
because CMIP6 is made up of 20+ MIPs (Eyring 
et al., 2016), all addressing different research 
questions. 

While many of the modelling centres have also 
increased the spatial resolution of their models in 
CMIP6 as compared to CMIP5, a few still have 
kept it the same. For example, for the scenario 
experiments exploring the evolution of future 
climate in response to changing greenhouse gas 
(GHG) emissions, the French model IPSL-CM5-
LR (used in CMIP5) had a resolution of 1.9° 
latitude x 3.75° longitude, whereas     the latest 



 

 

version of this model (IPSL-CM6A-LR) used in 
CMIP6 has a resolution of 1.25° latitude x 2.5° 
longitude.  On the other hand, CanESM2 (CMIP5) 
and CanESM5 (CMIP6) from the Canadian Centre 
for Climate Modelling and Analysis (CCCma) both 
have the same spatial resolution of 2.8° latitude x 
2.8° longitude. Please see more model 
information in Table 5.1, and discussions on 
model independence in Chapter 5 section 5.5 
(Table 5.3).   
 

4.3 Future Climate Scenarios 
 
According to Eyring et al. (2016), a set      of 
common experiments within the CMIP6 called 
DECK (Diagnostic, Evaluation and 
Characterization of Klima) and the CMIP historical 
simulations (1850–near present) will maintain 
continuity and help document basic 
characteristics of models across different phases 
of CMIP. This was a key element of the CMIP6 
design. 

DECK: The DECK comprises four baseline 
experiments: (a) a historical Atmospheric Model 
Intercomparison Project (AMIP) simulation, (b) a 
pre-industrial control simulation (piControl), (c) a 
simulation forced by an abrupt quadrupling of CO2 
(abrupt-4×CO2) and (d) a simulation forced by a 1 
% yr−1 CO2 increase (1pctCO2). In addition to the 
DECK and historical simulations, there are 21 
model intercomparison projects (MIPs) endorsed 
by CMIP6. ScenarioMIP is one of the key MIPs 
and the one that produces the simulations by 
forcing the GCMs with various future scenarios. 
Note that the AMIP experiments are atmosphere-
only, coupled to land (but not ocean or sea ice) 
and that the latter are provided as boundary 
conditions. 

Shared Socioeconomic Pathways (SSPs): The 
AR6 Report assesses the climate response to five 
global warming scenarios that cover the range of 
possible future development of climate change 
drivers found in the literature. The underlying 
model simulations come from ScenarioMIP 
mentioned above. The scenarios in the model 
simulations start in 2015 and are as follows:  

(1) SSP1-1.9 - very low GHG emissions and CO2 
emissions declining to net zero around or after 
2050, followed by varying levels of net negative 
CO2 emissions,  

(2) SSP1-2.6: low GHG emissions and CO2 
emissions declining to net zero around or after 
2050, followed by varying levels of net negative 
CO2 emissions,  

(3) SSP2-4.5: intermediate GHG emissions and 
CO2 emissions remaining around current levels 
until the middle of the century,  

(4) SSP3-7.0:  high GHG emissions and CO2 
emissions that roughly double from current levels 
by 2100, and  

(5) SSP5-8.5: very high GHG emissions and CO2 
emissions that roughly double from current levels 
by 2050, as illustrated in Figure 4.1. Emissions 
vary between scenarios depending on socio-
economic assumptions, levels of climate change 
mitigation and air pollution controls.  

Compared to CMIP5, the concept of SSPs 
expands on the framework of RCPs 
(Representative Concentration Pathways) by 
including various levels of socio-economic 
pathways (O’Neill et al., 2016) 

.

 



 

 

 
 
Figure 4.1: The role of CO2 in driving future climate change in comparison to other greenhouse gases (GHGs). The 
GHGs included here are CH4, N2O, and 40 other long-lived, well-mixed GHGs. The blue shaded area indicates the approximate 
forcing exerted by CO2 in Shared Socio-economic Pathways (SSP) scenarios, ranging from very low SSP1-1.9 to very high 
SSP5-8.5 (Chapter 7). The CO2 concentrations under the SSP1-1.9 scenarios reach approximately 350 ppm after 2150, while 
those of SSP5-8.5 exceed 2000 ppm CO2 in the longer term (up to year 2300). Similar to the dominant radiative forcing share 
at each point in time (lower area plots), cumulative GWP-100-weighted GHG emissions happen to be closely correlated with 
cumulative CO2 emissions, allowing policymakers to make use of the carbon budget concept in a policy context with multi-gas 
GHG baskets as it exhibits relatively low variation across scenarios with similar cumulative emissions until 2050 (inset panel). 
(Figure 1.29 in IPCC, 2021: Chapter 1). 
 

4.4 GCM-based global climate 
projections 
 
In this section, we present the global climate 
projections reported in the IPCC AR6. Specifically, 
we present projected changes in global mean 

near-surface air temperature, rainfall, monsoon, 
ENSO, IOD, and MJO. 
 

4.4.1 Temperature 
 
The recent AR6 report states that the near-term 
(2021-2040) mean global surface air temperature 



 

 

(GSAT) is extremely likely to increase by 0.4°C to 
1.0°C relative to 1995 - 2014 with less 
dependence on the SSP scenario. However, the 
AR6 temperature projections using CMIP6 
models predict an increase of 0.1°C to 0.2°C over 
the AR5 projections. In the near-term, the 
likelihood that the average GSAT would rise by 
1.5°C relative to the 1850-1900 is higher in CMIP6 
models under different scenarios due to improved 
methodology and continued global surface 
warming. The regional variations in surface 
temperatures indicate significant warming at 
higher latitudes, particularly during the Arctic's 
boreal winter. The highest rises in seasonal mean 
surface temperature under the SSP1-2.6 and 
SSP3-7.0 scenarios occur over land rather than 
oceans. In both scenarios, it is projected that 
seasonal mean surface temperatures of the 
Northern Hemisphere will increase by 1.0°C over 
the land regions. 

The multi-model mean GSAT change (relative to 
1850-1900; pre-industrial [PI]) from the CMIP6 
GCMs with a higher ECS (>4°C) and those with 
medium ECS (2.5 °C <=T<=4°C) are shown in 
Figure 4.2. ECS values between 2.5 °C to 4°C are 

considered to be within the likely range as 
assessed by IPCC in AR6. Also shown are the 
observed anomalies from the same baseline using 
the Berkeley Earth dataset for the period 1850-
2021. The historical anomalies are further merged 
with the projected change in GSAT for the high- 
and low-ECS models under the SSP5-8.5 
scenario from 2015 to 2100. 

The observed PI mean GSAT is found to be 13.8 
°C. Both the high-ECS models and the medium-
ECS models are found to underestimate the 
observed value (13.1°C in high-ECS models and 
13.6°C in medium-ECS models). Notably, the 
high-ECS models simulate a cooler PI period as 
compared to the medium-ECS ones. 

The observed anomalies for the period 1995-2014 
(IPCC AR6 historical baseline period) from the PI 
were found to be 0.9°C. The corresponding 
anomalies for the high-ECS models during the 
same period were found to be the same as 
observed, and that for the medium-ECS models 
were lower than observed (0.7°C). Thus, even in 
the historical period the high-ECS models were 
warming at a higher rate.  

 

 

Figure 4.2: Time series of the multi-model mean (MMM) global average temperature anomaly from the HIGH-ECS (red line) 
and MEDIUM-ECS (orange line) model sets, respectively. Anomalies are relative to the 1850-1900 (pre-industrial) average. The 
observational time series is given by the Berkeley-Earth surface air temperature dataset (black line). The corresponding MMM 



 

 

global average temperature for each dataset for the pre-industrial world (1850-1900), recent historical (1995-2014), mid-century 
(2041-2060) and end-century (2081-2100) periods are shown. Changes in the MMM global average temperature relative to the 
pre-industrial world in each dataset are shown in brackets. Coloured year values denote the first year in which the 1.5℃ and 2℃ 
global mean anomaly threshold is crossed in the HIGH- and MEDIUM-ECS models. 

 

The projected mid-century (2041-2060) change 
for the high-ECS models was found to be 2.9°C 
and that for the medium-ECS models was found 
to be 2.2°C. By the end-century (2081-2100), the 
high-ECS models had warmed at an even faster 
rate and the multi-model mean projected change 
was found to be 5.8°C as compared to the 
corresponding change of 4.1°C projected by the 
medium-ECS models. Thus, the gap in the 
projected GSAT change between the high- and 
medium-ECS models kept increasing throughout 
the 21st century. The figure also shows that while 
the medium-ECS models will breach the 1.5°C 
global warming level (from PI) around 2031, the 
2°C level around 2044, and the 4oC level around 
2088, the high-ECS models will reach the 
corresponding levels around 2019, 2034, and 
2067, respectively. Note that the years mentioned 
above are based on annual mean values and not 
20-year means and hence represent the first year 
when the corresponding warming level is reached.  
 

4.4.2 Rainfall 

According to the AR6 report, as the GSAT is 
projected to increase, there is an increased global 
land precipitation in the 21st century. At the end of 
the century (2081-2100), under the low emission 
scenario, the precipitation is projected to change 
by -0.2% to +4.7% and in the high emission 
scenario, the change is 0.9-12.9% relative to 
1995-2014. More precipitation occurs at higher 
latitudes over oceans, wet tropical regions, and 
less over dry subtropics. 

There are regional uncertainties and seasonal 
differences in the precipitation changes in the 
future warmer climate due to multiple reasons. 
Precipitation variations in the tropical oceans are 
mostly influenced by the changes in SST patterns, 
but in the subtropics, they are primarily influenced 
by the quick response to CO2 forcing (He & 
Soden, 2017). Natural and man-made aerosols 
have an impact on regional precipitation patterns 
in addition to their response to CO2 forcing 
(Shawki et al., 2018; Liu et al., 2018). The 

uncertainty in the precipitation estimates is 
attributed to model uncertainty, internal variability, 
and uncertainties in natural and anthropogenic 
aerosol emissions. 
 

4.4.3 Monsoon 

In CMIP6 models, under all future warming 
scenarios, the monsoon precipitation index, the 
area-weighted precipitation rate over the global 
monsoon land regions, is expected to rise due to 
increased moisture content (Chen et al., 2020). 
The CMIP6 projections indicate an increase in the 
global land monsoon precipitation by 1.3 -2.4 % 
per oC of GSAT increase under different 
scenarios. In four of the five SSP scenarios, there 
is a tendency for the northern hemisphere 
summer monsoon circulation index (i.e., the 
vertical shear of zonal winds between 200 and 
850 hPa averaged in an area 0-20N; 120W-120E) 
to decrease, potentially counteracting an increase 
in monsoon precipitation. Because of internal 
variability, including Atlantic Multi-decadal 
Variability (AMV) and Pacific Decadal Variability 
(PDV), the expected changes in the monsoon 
circulation are mainly uncertain. 

The mid-century and end century projections 
indicate an asymmetry in monsoon rainfall with 
increased rainfall in the Northern Hemisphere 
than Southern Hemisphere, and an East-West 
asymmetry with enhanced Asian-African 
monsoon and weakened North American 
monsoon (Pascale et al., 2021; Wang et al., 
2021). Overall, the global land monsoon 
precipitation is projected to increase despite 
reduced circulation under different scenarios in 
mid-century and end century. The combined 
contributions of model uncertainty and internal 
variability will have an impact on the projected 
changes in global monsoon precipitation and 
circulation. 
 

4.4.4 ENSO 

ENSO impacts precipitation variabilities 
worldwide (Ropelewski and Halpert 1987; Hendon 



 

 

2003). Across the Indo-Pacific Ocean, ENSO 
induces a zonal dipole pattern of precipitation 
variability, i.e., positive variability in the tropical 
Pacific (TP) and “horseshoe” shaped negative 
variability towards the Maritime Continent (MC) 
(Langenbrunner and Neelin 2013). That is, TP 
becomes wetter than normal while MC becomes 
drier. Physically, ENSO-rainfall teleconnection 
over the MC is part of the ENSO-induced 
circulation responses over the tropics (Wang et al. 
2003; Lau and Nath 2003; Stuecker et al. 2015). 
In boreal summer, when El Niño develops, a 
sequence of evolution begins with the eastward 
shifting of Walker Circulation due to the 
anomalous warming in the eastern Pacific. The 
shift suppresses convection over the MC (also 
weakens Asian–Australian Monsoon) and 
enhances convection in the Central Pacific. 

Under warming, ENSO responses are uncertain 
across various emission scenarios and idealized 
simulations (Chen et al. 2017; Callahan et al. 
2021; Cai et al. 2021; Brown et al. 2020). Tropical 
surface temperature variability changes are 
complex given oceanic and atmospheric 
processes, and the net effect of diverging 
feedbacks could potentially give less robust 
changes to the surface temperature variability and 
a low model agreement. On the contrary, the 
ENSO-induced precipitation variability over the 
TP strengthens robustly. It involves mean state 
changes beyond the bonds by ENSO itself, e.g. 
the tropical rainfall variability is strongly related to 
mean atmospheric changes associated with 
Clausius–Clapeyron relationship (Hu et al. 2021).  

CMIP3 and CMIP5 models robustly projected that 
over the central-eastern Pacific the ENSO-
induced rainfall variability strengthens (Bonfils et 
al. 2015; Perry et al. 2017; Yeh et al. 2018; Power 
et al. 2013; Kug et al. 2010; Chung and Power 
2014; Chung et al. 2014; Chung and Power 2016, 
2015). Besides the intensification, CMIP3 and 
CMIP5 models robustly project that, over the TP, 
ENSO-induced rainfall variability shifts eastward 
under warming (Yeh et al. 2018; Taschetto et al. 
2020; Yan et al. 2020; Coelho and Goddard 2009; 
Huang and Xie 2015; Bayr et al. 2014; Kug et al. 
2010; Power et al. 2013). 

 

 

4.4.5 IOD 

The mean climate state projections of the tropical 
Indian Ocean sea surface temperatures resemble 
the positive phase of the IOD mode with rapid 
warming in the west compared to the east. With 
no discernible change in frequency, these mean 
state modifications result in decreased amplitude 
differences between positive and negative IOD 
events. (Cai et al., 2013). However, these 
projected mean state changes might be due to 
biases of the model simulated current climate (Li 
et.al., 2016). Cai et al., (2021) showed an 
increased frequency of strong positive IOD events 
and a reduced frequency of moderate positive 
IOD events using the CMIP5 RCP8.5 and CMIP6 
SSP5-8.5 simulations. These IOD projections 
indeed may depend on the realistic simulations of 
the background mean state changes of the Indian 
Ocean (Li et al., 2016). Hence, the future 
projections of IOD changes in the mid-term and 
long term remain uncertain due to lack of robust 
evidence and its reliance on the model's mean 
state biases. 
 

4.4.6 MJO 

According to sensitivity studies, MJO precipitation 
is expected to rise in magnitude with up to 14% 
per degree increases in warming (Adames et al., 
2017; Wolding et al., 2017). In comparison to the 
CMIP3 or CMIP5 models, the CMIP6 models are 
significantly better at simulating the MJO. 
Reduced dry moisture bias in mean states results 
in improved and eastward propagation of the MJO 
over the MC (Ahn et al., 2020). Additionally, the 
amplitudes of MJO precipitation and zonal winds 
can now be reliably simulated in CMIP6 models 
(Orbe et al., 2020), and the model spread of the 
MJO characteristics has decreased (Chen et al., 
2022). A multi-model mean of CMIP6 models 
shows a 17% increase in amplitude of 
precipitation, a 9% increase in MJO propagation 
speed, a 2-day reduction in MJO period, and a 5-
degree eastward extension (Wang et al., 2023). 
The MJO is projected to become more intense 
under a warmer environment in the future, along 
with an increase in the associated precipitation 
amplitude. 



 

 

4.5 GCM-based regional climate 
projections 

 
In this section, we present the regional climate 
projections over the Southeast Asia/Maritime 
Continent region from our in-house analysis and 
relevant literature from the IPCC AR6 regional fact 
sheet for Asia. These regional climate projections 
are constructed based on the global climate 
models. Specifically, we present a summary of 
key climate change information over SEA from the 
IPCC AR6 regional fact sheet for Asia, projected 
changes in precipitation, projected changes in 
temperature, projected changes in ENSO 
teleconnections, and finally, projected changes in 
northeast monsoon surges. 

Although one may still be able to derive some 
useful high-level information (for example, related 
to large-scale climate drivers such as ENSO) on 
regional climate change from GCM data, it is to be 
noted that the GCMs, due to their coarse spatial 
resolution, and also the complex topography and 
coastlines of the Maritime Continent are unable to 
accurately represent small islands such as 

Singapore in the model. For example, while one 
GCM may “see” Singapore as a part of peninsular 
Malaysia, another GCM may “see” it as an ocean 
point. This is precisely the reason why high-
resolution regional climate change projections 
such as V3 need to be carried out, so that the finer 
spatial scale information can be produced, both 
for more reliable physical climate change 
assessment and for conducting downstream high-
resolution impact studies. 

 

4.5.1 Summary of SEA Projections 
from the IPCC AR6 Climate Atlas 

As one of the outreach products, the IPCC AR6 
constructed regional fact sheets by dividing the 
world into 11 regions and collating key climate 
change messages for each of these regions. 
These regions are further divided into subregions. 
The fact sheets constitute an entry point for 
regionalized information in the Chapters, the 
Technical Summary and the Interactive Atlas. The 
Asian region and its various subregions are shown 
in Figure 4.3. The Southeast Asian subregion is 
marked as “SEA” in the figure. 

 

 



 

 

Figure 4.3: The various subregions of Asia for which climate change information has been provided in the regional factsheet. 
Also shown in grey are the monsoon regions. (Map from the Regional fact sheet for Asia, IPCC). 

 

Key messages for the SEA subregion are 
presented below, along with the associated 
confidence levels (where available) assessed by 
the IPCC: 

1. Future warming over SEA will be slightly 
less than the global average (high 
confidence). 

2. Rainfall will increase in the northern parts 
of mainland SEA and decrease in the 
Maritime Continent in some seasons 
(medium confidence). 

3. In the near-term, South and Southeast 
Asian monsoon and East Asian summer 
monsoon precipitation changes will be 
dominated by the effects of internal 
variability (medium confidence). 

4. Compound impacts of climate change, 
land subsidence, and local human 
activities will lead to higher flood levels and 
prolonged inundation in the Mekong Delta 
(high confidence). 

 

4.5.2 Precipitation Changes over SEA 
from CMIP6 GCMs 
 
The mean multi-model changes in the annual 
mean and seasonally-averaged rainfall for the 
end-century 2081-2100 period are shown in 
Figure 4.4 for all available CMIP6 models. Also 
shown are the mean changes found in the subset 
of models with high ECS (ECS > 4 K) and those 
with medium climate sensitivity (2.5 ≤ ECS ≤ 4 K). 

On the annual time scale, precipitation is likely to 
increase overall land areas. The biggest changes 
are projected over the northern (mainland) SEA 
region and over Borneo and New Guinea. In 

contrast, decreases are seen over large portions 
of water. Also note that Singapore lies in between 
wider areas of projected rainfall increase and 
projected rainfall decrease in most of the season, 
making rainfall projections for Singapore 
particularly challenging. The magnitude of 
projected changes in mean annual rainfall 
appears largely similar between high and medium 
ECS models, except in the easternmost portion of 
the domain (equatorial western Pacific), where the 
high ECS models show a larger magnitude.  

A different story emerges between the two 
subsets of high ECS and medium ECS models. 
For seasons other than the northern hemisphere 
winter (DJF), the spatial pattern of changes is 
largely coherent between the high and medium 
ECS models. However, the high ECS models 
(Figure 4.4 e,h,k,n) project much stronger 
changes in mean seasonal rainfall over many land 
and water areas than the medium ECS models 
(Figure 4.4 f,i,l,o). This suggests that the regional 
precipitation response tends to scale with the level 
of warming. Most notable are the strong drying 
signals projected for vast areas north (south) of 
the equator in MAM (JJA).  

The spatial pattern of these signals largely 
resembles the historically known mean response 
to El Niño events. They are, therefore, most likely 
associated with the projected emergence of more 
El Niño-like conditions in the future (e.g. Cai et al., 
2014, 2021) and the enhanced and eastward shift 
of the ENSO-rainfall teleconnection over the 
region (Chen et al. 2023; see also Sec 4.5.4). 
Interestingly, the full ensemble signals for MAM, 
JJA and SON in Figure 4.4 g, j, m, appear to be 
mainly driven by changes projected by the high 
ECS models.  



 

 

 
Figure 4.4: Mean multi-model changes in precipitation (in %) for end-century (2081-2100) under the SSP5-8.5 scenario for 
CMIP6 GCMs that have both future and historical periods available. Each column shows the set of ALL  CMIP6 (n=36), HIGH-
ECS (n=13) and MEDIUM-ECS (n=13) models, respectively, and each row shows the season. (a-c) Annual (ANN) changes. (d-
f) December-February (DJF) changes. (g-i) March-May (MAM) changes. (j-l) June-August (JJA) changes. (m-o) September-
November (SON) changes.  

 

4.5.3 Temperature Changes over SEA 
from CMIP6 GCMs 
 
Changes in daily mean temperature across the 
SEA domain are shown in Figure 4.5. As 
expected, the high ECS models project much 
higher daily mean temperature changes over both 
land and sea and also stronger land-sea contrasts 
on the annual and seasonal time scales (Fig. 4.5 

b, e, h, k, n). Changes in excess of 5oC are even 
projected in the hotter summer periods of the year 
in MAM and JJA, particularly in the interior 
northern portions of mainland SEA. Differences in 
the projected temperature changes between the 
high and medium ECS models amount to at least 
1oC over sea and up to around 2oC over land. 
Furthermore, similar magnitudes of temperature 
change are projected regardless of season within 



 

 

each group of models, suggesting that global 
warming affects all seasons equally.

 

 
Figure 4.5: As in Fig. 4.4 but for mean multi-model changes in daily average temperature (in °C). 
 
 

4.5.4 ENSO teleconnection changes 
under warming 
 
The Maritime Continent (MC), located in the heart 
of the Indo-Pacific warm pool, plays an important 
role in the global climate. However, the future MC 
climate is largely unknown, in particular the 
ENSO-rainfall teleconnection (Fig. 4.6 & Fig. 4.9). 
ENSO induces a zonal dipole pattern of rainfall 

variability across the Indo-Pacific Ocean, i.e., 
positive variability in the Tropical Pacific and 
negative variability towards the MC. Here, new 
CMIP6 models robustly project that, for both land 
and sea rainfall, the negative ENSO 
teleconnection over the MC (drier/wetter during El 
Niño/La Niña) could intensify significantly under 
the SSP585 warming scenarios (Fig. 4.7). 
Strengthened teleconnection may cause 



 

 

enhanced droughts and flooding, leading to 
agricultural impacts and altering rainfall 
predictability over the region. Models also project 
that the Indo-Pacific rainfall center and the zero-
crossing of dipole-like rainfall variability both shift 

eastward, which adjustments are more notable 
during boreal summer than winter (Fig. 4.8). All 
these projections are robustly supported by the 
model agreement and scale up with the warming 
trend. 

 
 
 

Figure 4.6: Observed ENSO-rainfall teleconnection. a. Observed global ENSO-precipitation correlation coefficient during boreal 
summer (JJA). Here the correlation coefficient is calculated between the anomalous precipitation (pr) and Niño3.4 sea surface 
temperature (ts). Stipping area indicates significant correlation with p-value<0.01. Defined domains of Maritime Continent (MC) 
(red box), Central Maritime Continent (CMC) (black dashed box), Eastern Maritime Continent (EMC) (green box), and tropical 
Pacific (TP)(blue dashed box) are shown. b. similar to a, but focusing on the MC.  
 
 

 

Figure 4.7: Summer (JJA) ENSO-rainfall teleconnection in the CMC is enhanced under warming. a. ENSO-precipitation 
covariance for the CMC domain across 32 CMIP6 models. The observation (black line), the model mean for the historical period 
(blue line), and the model mean for the future SSP585 scenario (red line) are shown. Model results are ranked by their values 
in the historical period. Model agreement on the future change is shown on the top.  b. 12-month ENSO-precipitation covariance 
across the CMC. Observations (GPCP, black curve), the multi-model mean of 32 CMIP6 models for the historical period (blue 
curve), and the multi-model mean for the SSP585 scenario (red curve) are shown. The shades indicate the 95% model range.  

 



 

 

 
Figure 4.8: Summer (JJA) zonal dipole-like ENSO-rainfall teleconnection shifts eastward under warming. a. Equatorial 
precipitation [5S-5N averaged] covariance with Niño3.4 sea surface temperature. Observations (GPCP, black curve), the multi-
model mean of 32 CMIP6 models for the historical period (blue curve), and the multi-model mean for the SSP585 scenario (red 
curve) are shown. The shades indicate the 95% model range.  b. Zero-crossing longitude of the precipitation covariance across 
32 CMIP6 models. The observation (black line), the model mean for the historical period (blue line), and the model mean for the 
future SSP585 scenario (red line) are shown. Model results are ordered by their values in the historical period. Model agreement 
on the future change is shown on the top. 



 

 

 

Figure 4.9: Schematic diagram showing the physical relationship between future changes in rainfall and ENSO-rainfall 
teleconnection. Across the longitude, the left is the Indian Ocean (IO), the middle is the Maritime Continent (MC), and the r ight 
is the Tropical Pacific (TP). Under warming, the deep convection center above the warm pool and the Walker Circulation shifts 
eastward. The first row shows that tropical precipitation enhances but also shifts the center to the east. The second row shows 
that ENSO-induced precipitation variability displays a zonal dipole structure (positive in the TP and negative in the MC), and this 
dipole strengthens under warming and shifts the zero-crossing longitude to the east. 

 

4.5.5 Northeast Monsoon Surge 
changes under warming 
 
Figure 4.10 shows the projected changes in 
rainfall and 850 hPa winds composited over 

northeast monsoon surge days using 6 GCMs. 
The definition of surge days follows in Chapter 
3.7, where the mean and standard deviation are 
calculated separately for historical and SSP5-8.5. 
Rainfall increases are projected around Borneo, 



 

 

Sulawesi, south Sumatra, New Guinea, and east 
of the Philippines, and drying around the Maluku 
Islands). The increase in surge rainfall over 
Borneo and New Guinea, together with the 
increase of DJF and SON rainfall over these two 
regions (Figure 4.4), suggests the surges could be 

related to changes in rainfall over those time 
periods. As for winds, the projected changes 
include easterlies over Indochina and west of 
Sumatra, as well as westerlies north of New 
Guinea. There is also an increase in surge 
frequency from 18% to 19%.  

 

 
Figure 4.10: shows the change in 850 hPa wind direction (arrows) and rainfall (shaded) composited over surge days from 2080-
2099 in SSP5-8.5 with respect to 1995-2014 in 6 GCMs, regridded to 1.5 x1.5 (those used for downscaling).  

 

 

The results indicate that Singapore might 
experience more surge events, but that the 
magnitude of rainfall from these events as a whole 
might not change much. One caveat is that we 
have not examined how changes in the strongest 
monsoon surge events might change with 
warming, which has implications for the 
precipitation extremes experienced over 
Singapore (see Chapter 10.3 for further 
discussion).  
 

4.6 Summary 
 
The current chapter focuses on using Global and 
regional climate projections from the CMIP6 
models (used in IPCC AR6) to comprehend 
information about climate change at global and 
regional scales. Here, we describe the projected 
changes in some important climate variables (i.e. 
temperature and rainfall), associated climate 

drivers (monsoon, ENSO, IOD, MJO), and 
regional teleconnections mainly influencing the 
Southeast Asian climate. 

The CMIP6 models have higher spatial resolution, 
improved model physics (parameterization 
schemes), and more earth system models with 
carbon cycle and biogeochemistry compared to 
the CMIP5 models. The equilibrium climate 
sensitivity (ECS) values in many of the CMIP6 
models are projected to be higher than the CMIP5 
models. The CMIP6 models, compared to earlier 
CMIP5 models, also have a socioeconomic 
storyline (SSP1-2.6, SSP2-4.5, SSP3-7.0, and 
SSP5-8.5) along with radiative forcing levels 
(CMIP5 models; Representative Concentration 
Pathways (RCP) 2.6, 4.5, 6.0 & 8.5) for the future 
warming scenarios. Therefore, one may expect 
higher confidence in the future projections of 
different climate variables and processes using 



 

 

the CMIP6 models compared to earlier CMIP5 
models. 

The global mean surface air temperature is 
projected to increase by 0.4 to 1.0oC relative to 
1995 - 2014 across most of the scenarios in the 
near term (2021-2040). Also, the land surface 
temperatures are expected to rise at least 1.0oC 
higher than the oceans during the same period. 
The near-term land precipitation is expected to 
increase under both low emission (-0.2 to 4.7%) 
and high emission (0.9 to 12.9%) scenarios with 
certain regional uncertainties due to internal 
variability, model uncertainty, and uncertainties in 
aerosol emissions. 

Under different warming scenarios, the global 
monsoon precipitation is expected to increase 
despite reduced circulation strength both in the 
mid and end century. The ENSO response due to 
warming is uncertain across different scenarios 
but has a strong signal of ENSO-induced 
precipitation variability over the tropical Pacific. 
Although the frequency of strong positive IOD is 
projected to increase, the IOD response is 
uncertain due to the lack of strong evidence and 
dependency on mean state biases of the model. 
In a future warmer climate, the MJO is projected 
to become more intense with an increased 
magnitude of associated precipitation. 

The regional projections over the SEA region 
show that mean surface temperature increases 
across the SEA are slightly less than the global. 
The daily mean surface temperatures are 
expected to increase over land and oceans with 
stronger land-sea contrast in high ECS models at 
annual and seasonal time scales. The 

temperatures are expected to rise up to 5oC during 
hot summer periods in MAM and JJA seasons 
over northern parts of SEA. The mean annual 
rainfall projections show increased values over 
most of the land regions of SEA, with higher 
increases over the northern SEA, Borneo, and 
New Guinea. The regional precipitation response 
across different seasons tends to scale with the 
level of warming, i.e. the high ECS models have 
stronger regional rainfall changes compared to the 
medium ECS models. In CMIP6 models, under 
the higher warming scenario (SSP5-8.5), there is 
a strong ENSO-rainfall signal over the MC with 
strong drier conditions during El Niño and strong 
wetter conditions during La Niña. 

There is an increased frequency of Northeast 
monsoon surges to 19% (from the current 18%) 
with increased rainfall over Borneo, Sulawesi, 
south Sumatra, New Guinea, and east of the 
Philippines, and reduced rainfall around the 
Maluku islands. Due to the combined effects of 
climate change, land subsidence, and regional 
human activity, there is a higher degree of 
confidence in the increasing floods and prolonged 
inundation across the Mekong Delta region. 

Overall, the CMIP6 future projections indicate 
increased global and regional surface air 
temperatures, enhanced global precipitation 
(regional differences; wet gets wetter, dry gets 
drier), increased monsoon land precipitation, and 
enhanced ENSO-rainfall teleconnections. In 
addition to the mean changes, extremes in 
temperature and rainfall are projected to increase, 
especially under SSP5-8.5 over many parts of the 
globe, including SEA. 
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5.1 Introduction 

The Southeast Asia (SEA) region is home to ca. 
8.5% of the global population and is highly 
vulnerable to climate change both due to the 
projected increase in natural hazards and the 
limited adaptive capacity of many of the SEA 
countries. The weather and climate over SEA are 
influenced by many local, regional, and large-
scale processes. Some of the important large 
scale processes include the Asian-Australian 
monsoon system, the Madden Julian Oscillation 
(MJO), El-Nino Southern Oscillation (ENSO), 
Indian Ocean Dipole (IOD), etc. Even within this 
region there is a large variation in the climatic 
conditions both in terms of mean and variability. 

In line with the previous generations of the 
Coupled Model Intercomparison Projects 
(CMIPs), the CMIP6 (Eyring et al, 2016) provides 
us with a coordinated set of climate model 
simulations from climate modelling centres 
around the world. Although global models have 
been known to perform well in providing large 
scale climate information, such as global mean 
temperature and rainfall, the regional and local 
climatic features are more prone to biases. 

According to the Sixth Assessment Report (AR6) 
by the Intergovernmental Panel on Climate 
Change (IPCC) the CMIP6 multi-model mean is 
cooler over the period 1980-2000 than both 
observations and CMIP5 (Bock et al., 2020; Flynn 
and Mauritsen, 2020), and that these biases of 
several tenths of a degree in some CMIP6 models 
could be due to an overestimate in aerosol 
radiative forcing during the period (Andrews et al., 
2020; Dittus et al., 2020; Flynn and Mauritsen, 
2020). 

There have also been studies on regional climate 
using the CMIP6 models. For example, Khadka et 
al. (2021) used model data from CMIP5 and 
CMIP6 to evaluate summer rainfall in Southeast 
Asia. They found CMIP6 models to be superior to 
CMIP5 ones in simulating rainfall and large-scale 
circulation, and attributed it to CMIP6 models’ 
higher spatial resolutions, increased number of 
vertical levels, and improved atmospheric and 
land surface parameterizations. They also 
reported that CMIP6 models are better at 
representing the annual cycle of rainfall but many 

still show dry biases like their predecessors. Many 
of the climate models from both CMIPs were 
reported to show a shorter rainy season due to 
late onset and early retreat. In another relevant 
study Ge et al. (2021) used outputs from 15 
CMIP6 GCMs to estimate projected changes in 
precipitation extremes for SEA at the end of the 
21st century and reported that the projected 
precipitation extremes increase significantly over 
the Indochina Peninsula and the Maritime 
Continent. 

The IPCC AR6 further reports with medium 
confidence that CMIP5 and CMIP6 models 
continue to overestimate observed warming in the 
upper tropical troposphere over the 1979-2014 
period by at least 0.1°C per decade, partly 
because of an overestimation of the tropical SST 
trends during this period. 

Kim et al. (2020) evaluated CMIP6 models for 
their performance in simulating the climate 
extreme indices defined by the Expert Team on 
Climate Change Detection and Indices (ETCCDI) 
and reported that the CMIP6 models generally 
capture the observed global and regional patterns 
of temperature extremes with limited 
improvements compared to the CMIP5 models. 
They also reported that the CMIP6 model skills for 
the precipitation intensity and frequency indices 
are broadly comparable to those of CMIP5 
models, but with an improvement in precipitation 
intensity amplitudes. 

Fiedler et al. (2020) evaluated the simulation of 
MJO in CMIP6 models by calculating the ratio of 
the eastward-propagating spectral power of 
tropical precipitation to that of its westward-
propagating counterpart summed up over the 
MJO characteristic wavenumbers one to three 
and periods of 20–100 days for the November to 
April season between 10oS and 10oN (a quantity 
often used as a measure for the MJO). It was 
found that while for observations this ratio was 
found to be in the range of 3.2 to 3.4 for CMIP6 
multi model mean it was found to be around 2.2. 
While this is better than that in CMIP6, there is 
scope for further improvement in future CMIPs. In 
the same paper they also evaluated ENSO-rainfall 
teleconnections in the CMIP6 models by using the 
method from Power et al. (2013) by computing the 
empirical orthogonal function (EOF) of SST 



 

 

means for June–December within 15oS–15oN, 
140oE–100oW, based on detrended and filtered 
SST time series, and found that there are two 
clear regions with systematic biases in 
precipitation associated with El Niño events, (i) 
too-strong positive anomaly around the Maritime 
Continent indicating a westward displaced 
precipitation maximum during El Niño events, and 
(ii) too pronounced double ITCZ. 

The IPCC AR6 Atlas provides only the large-scale 
information, and higher resolution information still 
needs to be generated by means of downscaling. 
Most of the CMIP6 models that have contributed 
to the WG-I report do not have Singapore as an 
island due to coarse resolution, and either 
represent it as a part of the Malay peninsula or 
show it as an ocean point. In order to make 
physical climate change projections on regional 
scales and also for making the global model data 
usable by the vulnerability and impacts 
assessment community, the coarse resolution 
global model data needs to be downscaled to 
higher resolutions. As was the case with CMIP5, 
CMIP6 also provides 6-hourly fields of model 
variables that can be further used to carry out 
dynamical downscaling to generate more reliable 
high resolution climate change projections at a 
regional level. It is imperative to thoroughly 
evaluate the historical simulations against 
observations and reanalysis to have confidence in 
the future large-scale climate change projections, 
and also for sub-selection of the models for 
downscaling. 

Dynamically downscaled projections are 
produced in a coordinated way under the 
Coordinated Regional Climate Downscaling 
Experiment (CORDEX), a programme under the 
auspices of the World Climate Research 
Programme (Giorgi et al., 2009). During the last 
few years, a set of downscaled RCMs projections 
for the Southeast Asia domain has become 
available under the Coordinated Regional Climate 
Downscaling Experiment – Southeast Asia 
(CORDEX-SEA) (Juneng et al., 2016; Ngo-Duc et 
al., 2017; Supari et al., 2020; Tangang et al., 
2018, 2020), and is used by SEA countries for 
their national climate change assessments and 
adaptation planning. 

As a part of the Third National Climate Change 
Study for Singapore (V3) the Centre for Climate 
Research Singapore (CCRS) has dynamically 
downscaled 6 CMIP6 GCMs over Southeast Asia 
to 8 km resolution, and 5 of them were further 
downscaled over the western Maritime Continent 
to 2 km resolution for the historical period (1955-
2014) and future (2015-2100) for 3 Shared 
Socioeconomic Pathways (SSPs) used in the 
IPCC AR6, namely, SSP1-2.6, SSP2-4.5 and 
SSP5-8.5. The dynamical downscaling domain is 
discussed in Chapter 2, and SINGV-RCM is 
discussed in Chapter 6 of this report. 

There is no universally accepted methodology on 
how to select a subset of GCMs for downscaling, 
but in order to be consistent with the practice of 
the dynamical downscaling community, we follow 
a methodology in-line with the CORDEX 
experiment design protocol standard described in 
Section 5.2.4. The data and methods used in this 
work are described in Section 5.2. The evaluation 
of CMIP6 GCMs and the process of sub-selection 
is presented in Section 5.3, followed by discussion 
and conclusions presented in Section 5.4. 
 

5.2 Data and Methods 

In this section we present the various datasets 
used (observations, reanalysis and CMIP6 model 
outputs), the different metrics used for evaluation 
(root mean squared error, pattern correlation 
coefficient, etc.), the sub-setting criteria used, and 
the domain of evaluation such that it is relevant for 
our purpose of dynamical downscaling. 
 

5.2.1 CMIP6 Model Data 

Model outputs from historical simulations of 49 
CMIP6 GCMs were used in our analysis. For 
some of the variables data from all 49 GCMs were 
not available so we used whatever was available 
during the time of analysis. Information on the 
GCMs, including their name, modelling centre, 
nominal grid resolution and ensemble member 
used in analysis have been presented in Table 
5.1. The variables include 2m air temperature, 
surface temperature, rainfall, 2m specific 
humidity, winds and mean sea level pressure. We 
have used the period 1995-2014 for most of the 
evaluations. 



 

 

 
Table 5.1: List of CMIP6 GCMs, modelling centre, nominal grid resolution and ensemble member. The dark green colour 
highlights models which had 6-hourly data available at the time of the downscaling.  
 

Sl. No. Model Name Institution Country Nominal 
Resolution 

Ensemble 
member 

1 ACCESS-CM2 CSIRO-ARCCSS-BoM Australia 250 km /r4i1p1f1 

2 ACCESS-ESM1-5 CSIRO Australia 250 km r1i1p1f1 

3 AWI-CM-1-1-MR AWI Germany 100 km r1i1p1f1 

4 BCC-CSM2-MR BCC China 100 km r1i1p1f1 

5 BCC-ESM1 BCC China 250 km r1i1p1f1 

6 CAMS-CSM1-0 CAMS USA 100 km r1i1p1f1 

7 CESM2 NCAR USA 100 km r1i1p1f1 

8 CESM2-FV2 NCAR USA 250 km r1i1p1f1 

9 CESM2-WACCM NCAR USA 100 km r1i1p1f1 

10 CESM2-WACCM-
FV2 

NCAR USA 100 km r1i1p1f1 

11 CIESM THU China 100 km r1i1p1f1 

12 CNRM-CM6-1 CNRM-CERFACS France 250 km r1i1p1f2 

13 CNRM-CM6-1-HR CNRM-CERFACS France   50 km r1i1p1f2 

14 CNRM-ESM2-1 CNRM-CERFACS France 250 km r1i1p1f2 

15 CanESM5 CCCma Canada 500 km r1i1p1f1 

16 CanESM5-CanOE CCCma Canada 500 km r1i1p2f1 

17 E3SM-1-0 DOE E3SM-Project USA 100 km r1i1p1f1 

18 E3SM-1-1 DOE E3SM-Project USA 100 km r1i1p1f1 

19 E3SM-1-1-ECA DOE E3SM-Project USA 100 km r1i1p1f1 

20 EC-Earth3 EC-Earth-Consortium Europe 100 km r1i1p1f1 

21 EC-Earth3-Veg EC-Earth-Consortium Europe 100 km r1i1p1f1 

22 FGOALS-f3-L CAS China 100 km r1i1p1f1 

23 FGOALS-g3 CAS China 250 km r1i1p1f1 

24 FIO-ESM-2-0 FIO-QLNM China 100 km r1i1p1f1 

25 GFDL-CM4 NOAA-GFDL USA 100 km r1i1p1f1 

26 GFDL-ESM4 NOAA-GFDL USA 100 km r1i1p1f1 

27 GISS-E2-1-G NASA-GISS USA 250 km r1i1p1f1 

28 GISS-E2-1-G-CC NASA-GISS USA 250 km r1i1p1f1 

29 GISS-E2-1-H NASA-GISS USA 250 km r1i1p1f1 

30 HadGEM3-GC31-LL MOHC UK 250 km r1i1p1f3 

31 HadGEM3-GC31-MM MOHC UK 100 km r1i1p1f3 

32 INM-CM4-8 INM Russia 100 km r1i1p1f1 

33 INM-CM5-0 INM Russia 100 km r1i1p1f1 

34 IPSL-CM6A-LR IPSL France 250 km r1i1p1f1 

35 KACE-1-0-G NIMS-KMA South Korea 250 km r1i1p1f1 

36 MCM-UA-1-0 UA USA 250 km r1i1p1f1 

37 MIROC-ES2L MIROC Japan 500 km r1i1p1f2 

38 MIROC6 MIROC Japan 250 km r1i1p1f1 

39 MPI-ESM-1-2-HAM HAMMOZ-Consortium Germany 250 km r1i1p1f1 

40 MPI-ESM1-2-HR MPI-M Germany 100 km r1i1p1f1 

41 MPI-ESM1-2-LR MPI-M Germany 250 km r1i1p1f1 

42 MRI-ESM2-0 MRI Japan 100 km r1i1p1f1 

43 NESM3 NUIST China 250 km r1i1p1f1 

44 NorCPM1 NCC Norway 250 km r1i1p1f1 

45 NorESM2-LM NCC Norway 250 km r1i1p1f1 

46 NorESM2-MM NCC Norway 100 km r1i1p1f1 

47 SAM0-UNICON SNU South Korea 100 km r1i1p1f1 

48 TaiESM1 AS-RCEC Taiwan 100 km r1i1p1f1 

49 UKESM1-0-LL MOHC UK 250 km r1i1p1f2 

 

  



 

 

5.2.2 Observations and Reanalysis 
 
Multiple observational and reanalysis datasets 
have been used for evaluation. See Table 5.2 for 

details. We have used ensemble means of 
observations/reanalysis where feasible as our 
baseline to compute model biases, to address 
observational/reanalysis uncertainty. 

 

 
Table 5.2: List of gridded observational (blue) and reanalysis data sets (green) used for evaluation in this chapter (all the data 
was regridded to 1.5°x1.5°, monthly, below shows the original grids), their climate fields used, and reference. The abbreviation 
pr refers to precipitation; TAS: surface air temperature; PSL: mean sea level pressure; SST: sea surface temperature; HUSS: 
specific humidity.  

 
NAME FIELDS (resol./freq.) REFERENCES 
HadISST v1 SST (1°x1°, monthly) Rayner et al. 2003 

COBE v2 SST (1°x1°, monthly) Hirahara et al. 2014 

OISST v2 SST (0.25°x0.25°, monthly) Reynolds et al. 2007 

ERSST v5 SST (2°x2°, monthly) Huang et al. 2017 

HURRELL SST (1°x1°, monthly) Hurrell et al. 2008 

HadCRUT4 TAS (5°x5°, monthly) Morice et al. 2012 

BEST TAS (1°x1°, monthly) Rohde and Hausfather, 2020 

FROGs PR (1°x1°, daily) Roca et al. 2019 

IMERG V06 PR (0.1°x0.1°, 30 mins) Huffman et al., 2019 

GSMAP PR (0.1°x0.1°, hourly) Okamoto et al. 2005 

TRMM 3B42 PR (0.25°x0.25°, 3 hours) Huffman et al., 2007 

PERSIANN_CDR PR (0.25°x0.25°, sub-daily) Ashouri et al., 2015 

CMORPH_v1 PR (0.25°x0.25°, 3 hours) Xie et al., 2017 

GPCP PR (1°x1°, daily) Adler et al. 2003 

ERA5 reanalysis SST, TAS, HUSS, PSL, 
WINDS (0.25°x0.25°, hourly) 

Hersbach et al. 2020 

MERRA2 reanalysis SST, TAS, HUSS, PSL, 
WINDS (0.5° x 0.625°, daily) 

Gelaro et al. 2017 

JRA55 reanalysis 
  
 

SST, TAS, HUSS, PSL, 
WINDS (0.56°x0.56°, 
 sub-daily, monthly) 

Kobayashi et al. 2015 

5.2.3 Metrics 
 
Various statistical measures such as pattern 
correlation coefficient (PCC), mean absolute error 
(MSE), and root mean square error (RMSE) have 
been used to assess the performance of the 
models against observations and reanalysis. In 
addition, advanced metrics such as the Taylor 
diagram have also been used to assess the 
performance of the models. 
 

5.2.4 Sub-setting of CMIP6 GCMs 
 
In order to carry out sub-selection we follow 
standard practices suggested by the coordinated 
regional climate downscaling experiment 
(CORDEX; e.g. Gutowski et al. 2016). Thus, the 
sub-selected GCMs should: (1) span the range of 
GCM projections of temperature and precipitation 
over SEA, (2) perform satisfactorily in the 

historical climate, (3) span the range of model 
diversity in terms of genealogy (e.g., Knutti et al. 
2013), and (4) have 6-hourly lateral boundary 
conditions (LBCs) available to drive the regional 
climate model. In addition to the aforementioned 
criteria, we also make use of expert judgement to 
discard models that are unable to simulate 
important aspects of regional climate over SEA. 
 

5.2.5 Domain 
 
Our domain of analysis focuses mostly on SEA, 
but for some of the tropical processes of interest 
included in tier-II of the analysis we have used 
larger domains. For example, for ENSO and cold-
tongue bias analysis we have used the entire 
tropical Pacific domain. Figure 5.1 shows the 8 km 
and 2 km downscaling domains used in the V3 
study. The D1 domain (8 km resolution) covers 
almost the whole of SEA and is slightly larger than 



 

 

the CORDEX-SEA domain, whereas, the D2 
domain (2 km resolution) covers Singapore and 
the western Maritime Continent. We use a one-
way offline nesting, and the lateral boundary 
conditions for the 2 km model come from the 8 km 

downscaled data. Since the lateral and lower 
boundary conditions to drive the 8 km 
downscaling are obtained directly from the CMIP6 
GCMs, our evaluation primarily focuses on the 8 
km domain.  

 

 
Figure 5.1: Dynamical downscaling domains for Singapore’s Third National Climate Change Study at 8 km and 2 km resolutions. 

 

5.3 Evaluation of Key Climate 
Variables 
 
In this section we present the evaluation of key 
climate variables, namely, temperature, rainfall, 
winds, humidity and mean sea level pressure from 
the CMIP6 GCMs with an objective to identify the 
GCMs that show consistently poor performance 
and hence may not be considered fit for 
downscaling. The resolution used for multi-model 
mean for the GCMs is 1.5º, although not the lowest 
model resolution, it is the resolution fits for majority 
of the models. Thus, all the variables are 
conservatively re-gridded to 1.5º. The 
observational datasets are mostly 1º degree then 
all re-gridded to 1.5º to be able to compare to the 
model outputs.  
 

5.3.1 Temperature 

Figure 5.2 shows the climatological annual mean 
surface air temperature (tas) in observations (and 
reanalysis) and CMIP6 GCMs. Overall, the models 
perform well on annual timescales with low biases 
(white colour; biases in the range of +/- 0.5C) over 
almost half of the domain. For example, the biases 
are quite low over the tropical Indian Ocean. 
However, there are some notable biases which 
can be seen from Figs. 5.2e and f. Figure 5.2e 
shows (i) large positive biases over the Southern 
Ocean and east Pacific, (ii) negative biases over 
western and central tropical Pacific, (iii) negative 
bias over North Atlantic, and (iv) negative bias over 
Indochina. Figure 5.2f shows that the bias over 
large parts of the Maritime Continent is within +/- 
0.5C, with exceptions such as Indochina and 
tropical western Pacific which show negative 
biases. 

 



 

 

 

Figure 5.2: 1995-2014 mean surface air temperature (tas) in observation (a,b) and models (c,d). a. mean of five observational 
and reanalysis datasets (BEST, ERA5, HADCRUT4, JRA55, and MERRA2) for the 60N-60S domain. b. similar to a, but for the 
SEA domain. c. multimodel mean of tas from 47 CMIP6 models for the 60N-60S domain. d. similar to c, but for the SEA domain. 
e. model bias (multimodel mean from 47 models minus the observational mean). Hatched areas indicate the agreement by 70% 
of models on the sign of bias. f. similar to e, but for the SEA domain. 

 
Figure 5.3 shows the distribution of model 
simulated tas values along with their RMSE and 
PCC for the global and SEA domains and for the 
annual mean and all seasons. Figure 5.3a, b show 
that the median of the multimodal ensemble lies 
within the spread of the reanalysis for annual 
mean as well as for each season over both global 
and SEA domains. The 25-75 percentile range of 
tas in models spans the reanalysis uncertainty 
range for all seasons and both domains. Figure 
5.3c, d show that the median RMSE values are 

highest in DJF over both domains as compared to 
annual mean and other seasons. Given that the 
mean tas for DJF is already lower as compared to 
other seasons, higher RMSE values would mean 
even higher percentage errors. Figure 5.3e, f 
shows that the median PCC values are much 
higher over the global domain (~0.99), whereas it 
is somewhat lower over the SEA domain. Notably, 
the DJF PCC values are higher, especially over 
SEA. 



 

 

 
Figure 5.3: 1995-2014 mean tas averaged over the 60N-60S domain (a) and the SEA (b) in five observational and reanalysis 
datasets and 47 CMIP6 models. c. RMSE of models for the annual and seasonal tas in the 60N60S. d. similar to c, but for the 
SEA. e. PCC of models for the annual and seasonal tas in the 60N60S. f. similar to e, but for the SEA. The orange lines represent 
the median. The lower hinge is the Q1 quartile (25th), and the upper hinge is the Q3 quartile (75th). The upper and lower bars 
are based on 1.5 times the interquartile range (IQR) value. The outliers are shown in the open circles. 
 

 

Figure 5.4 shows the performance of the 
individual CMIP6 GCMs for the global (60oS to 
60oN) and SEA domains assessed from their 
RMSE and PCC values. For the global domain, 

we find that the annual mean RMSE mostly lies 
between the range of 1oC to 2oC, with around 5 
models exceeding 2oC. The seasonal means also 
show a similar behaviour. It is to be noted that we 



 

 

exclude the poles because we noted much larger 
biases over the polar region that may not be 
directly relevant to our purpose of sub-selection 
and at the same time masks the performance of 
the GCMs in the mid- and low-latitudes because 
of their lower values as compared to the higher 
latitudes. RMSE over SEA domain (Fig. 5.4b) 
mostly lies between around 0.7oC to 2oC, which 
was counter-intuitive since we were expecting 
regional biases to be larger than the global biases, 
but the regional biases over different regions can 
be higher or lower than the global mean, and it 
was good to see that the CMIP6 models have 
lower biases over our domain of interest. It is to be 
noted that many of the models show higher biases 
in DJF compared to other seasons and annual 
mean. The bottom five models based on annual 

mean RMSE are NorCPM1, BCC-ESM1, CNRM-
CM6-1, BCC-CSM2-MR, and CNRM-CM6-1-HR. 
The PCCs are shown in Figure 5.4c, d, for the 
global and SEA domains, respectively. The PCCs 
are generally quite high over the global domain 
with values greater than around 0.94 for the 
annual mean as well as all seasons. However, the 
PCCs over the SEA domain, in general, seem to 
be lower than the global, with values as low as 
around 0.65 for the JJA season. In general, DJF 
seems to have the highest PCCs, whereas JJA 
seems to have the lowest PCCs. Note that while 
the PCCs are generally higher in DJF, the RMSEs 
are also higher, as seen above. The bottom five 
models based on annual mean PCCs over the 
SEA domain are INM-CM4-8, NorCPM1, MCM-
UA-1-0, GISS-E2-1-H, and MIROC-ES2L.   

 



 

 

 
Figure 5.4: Performance of CMIP6 models as to RMSE for the annual and seasonal tas over the 60N60S (a) and SEA (b).  
Performance of CMIP6 models as to PCC for tas over the 60N60S (c) and SEA (d). 

  



 

 

5.3.2 Rainfall 
 
Similar analysis as presented above for near-
surface air temperature is then carried out for 
rainfall and presented in Figures 5.5 to 5.7. Figure 
5.5 shows the annual mean precipitation for the 
global and SEA domains and the corresponding 
biases based on multi-model means. From 
Figures 5.5a and 5.5c it can be seen that overall 
the CMIP6 GCMs perform well in simulating the 
large scale pattern and magnitude of rainfall, 
although there are some biases that can be more 
clearly seen in panels e and f of the figure. For 
example, even from the absolute values we can 

see the well-known double ITCZ bias over the 
tropical Pacific which has been present in 
previous generations of CMIP. From Figure 5.5e 
it can be seen that there are robust biases (based 
on 70% model agreement) over the tropical 
Pacific, tropical Atlantic, and western equatorial 
Indian ocean. Zooming into the SEA domain, we 
find positive biases over the South China Sea and 
over east of Borneo. In contrast, we see a large 
negative bias over the northern Bay of Bengal. 
Similar to the annual mean rainfall in Figure 5.5, 
JJA season rainfall in FigureA5.1 and the DJF 
season rainfall in Figure A5.2 also show 
consistent understanding of the evaluations.   

 

 
Figure 5.5: 1995-2014 mean precipitation (pr) in observation (a, b) and models (c, d). a. FROGS datasets for the 60N-60S 
domain. b. similar to a, but for the SEA domain. c. multi-model mean of pr from 48 CMIP6 models for the 60N-60S domain. d. 
similar to c, but for the SEA domain. e. model bias (e.g., multi-model mean from 48 models minus the observational mean). 
Stippled areas indicate the agreement by 70% of models. f. similar to e, but for the SEA domain. 

 

Figure 5.6 shows the inter-model spread of the 
absolute values of precipitation, RMSE, and PCC 
over the global and SEA domains. From Figure 
5.6a we see that the observed mean for the global 
domain is around 2.8mm/day, for annual as well 
as for various seasons with small seasonal 

variations. The CMIP6 GCMs, overall, 
overestimate the rainfall on seasonal as well as 
annual timescale scales with the median of the 
inter-model spread showing a value of around 3.2 
mm/day (an overestimate of around 14%). 
Notably, because of the overall overestimation in 



 

 

the GCMs the one that is closest to observations 
is considered an outlier in the distribution. As 
expected, the observed annual and seasonal 
means are higher over the SEA domain with 
higher seasonal variations (JJA being the highest 
and MAM being the lowest). The CMIP6 GCMs 
are found to perform quite well over SEA with the 
median value of the multi-model distribution 
overestimating the observed values by up to 5% 
on annual as well as seasonal timescales.  

From Figure 5.6c we find that the annual mean 
RMSE over the global domain is lower than the 
seasonal (as expected), and the values for MAM 
and JJA are slightly higher than other seasons. 
The RMSE values are relatively higher over the 
SEA domain on annual and seasonal timescales, 
with JJA showing the highest value and MAM 
showing the lowest, noting that these are also the 
wettest and driest seasons over the SEA domain, 
respectively (Figure 5.6d). For the global domain, 
the PCC values are generally high (0.8 to 0.9) for 
annual and all seasons except MAM (around 
0.75), as seen from Figure 5e. Whereas, for the 
SEA domain, they are slightly lower (0.7 to 0.8), 

with DJF showing a somewhat higher PCC of 
around 0.83. 

Figure 5.7 shows the annual and seasonal RMSE 
and PCC for the global and SEA domains for the 
individual models, with the best to worst shown 
from left to right, based on the annual values. For 
the global domain, the RMSE values are found to 
be higher in the JJA and MAM seasons, while for 
the SEA domain they are highest in JJA  (Figure 
5.7a, b). The bottom 5 models based on SEA 
annual performance using RMSE are MPI-ESM-
1-2-HAM, INM-CM4-8, MCM-UA-1-0, FGOALS-
g3, and IPSL-CM6A-LR. 

For the global domain, MAM is found to have the 
lowest PCC, whereas, for the SEA domain the 
PCC values are higher during DJF and lower 
during JJA (Figure 5.7c, d). Overall, as expected, 
the PCC values are lower than global both on 
annual and seasonal timescales. The bottom 5 
models based on annual rainfall PCC over the 
SEA domain are MPI-ESM-1-2-HAM, INM-CM5-
0, MCM-UA-1-0, IPSL-CM6A-LR, and INM-CM4-
8. 
 
 



 

 
Figure 5.6: 1995-2014 mean pr averaged over the 60N-60S domain (a) and the SEA (b) in FROGS observational datasets 
(including PERSIANN-CDR, IMERG, GPCP, CMORPH, GSMAP) and 48 CMIP6 models. c. RMSE of models for the annual and 
seasonal pr in the 60N60S. d. similar to c, but for the SEA. e. PCC of models for the annual and seasonal pr in the 60N60S. f. 
similar to e, but for the SEA. 

 
 



 

 
Figure 5.7: Performance of CMIP6 models as to RMSE for the annual and seasonal pr over the 60N60S (a) and SEA (b).  
Performance of CMIP6 models as to PCC for pr over the 60N60S (c) and SEA (d). 

  



 

5.3.3 Mean Sea Level Pressure 
 
In Figure 5.8 we compare the psl from 48 CMIP6 
models to the ensemble-mean reanalysis (JRA-
55, ERA5 and MERRA2) for the global and SEA 
domains.   
 
The subtropical oceanic highs in reanalysis 
(Figure 5.8a) are well captured by the models 
(Figure 5.8c), as is the relatively low psl over SEA. 

Figures 5.8b, d show that the southwest to 
northeast spatial gradient in psl is also simulated 
in models. The sign of the bias is not systematic 
across models, and is generally higher outside 
SEA, with some of the highest values collocated 
with mountain ranges (e.g. Himalayas, Rockies, 
Andes). Over SEA, there is a high over Indochina 
and low around east Java and Sulawesi, 
alongside a corresponding low/high bias in tas. 
Nevertheless, biases in psl are relatively small 
over much of SEA. 

 

 
Figure 5.8: 1995-2014 mean sea level pressure (slp) in observation (a, b) and models (c, d). a. Mean of JRA-55, ERA5 and 
MERRA2 for the 60N-60S domain. b. Similar to a, but for the SEA domain. c. Multimodel mean of slp from 48 CMIP6 models for 
the 60N-60S domain. d. Similar to c, but for the SEA domain. e. Model bias (multimodal mean from 48 models minus the 
observational mean). Stippled areas indicate the agreement by 70% of models on the sign of bias. f. Similar to e, but for the 
SEA domain. 

 

5.3.4 Humidity 
 
Figure 5.9 shows the annual mean specific 
humidity (huss) from the ensemble mean 
reanalysis (JRA-55, ERA5 and MERRA2) for the 
global and SEA domains, the same from the 
CMIP6 multi-model means, and the 
corresponding biases. Overall, the large-scale 

pattern in huss is simulated well in CMIP6 GCMs, 
although there are regional biases which can be 
seen in Figure 5.9e, f. Over the global domain 
there is large negative bias over the Indian region, 
South America, and western and central North 
Pacific, whereas, there is positive bias over 
tropical eastern Pacific, east Atlantic near the west 
coast of Africa, and the southern oceans. Over the 



 

SEA domain the biases are generally low, except 
for the dry bias over Indo-China, and southern 
equatorial Indian Ocean. Since the humidity field 
over the SEA domain is generally well simulated, 

we don’t show the inter-model spread in RMSE 
and PCC, and the rankings of the individual 
models for this variable.  

 

 
Figure 5.9: 1995-2014 annual mean specific humidity (huss) in reanalysis (a, b) and models (c, d). a. Mean of JRA-55, ERA5 
and MERRA2 for the 60N-60S domain. b. Similar to a, but for the SEA domain. c. Multimodel mean of huss from 48 CMIP6 
models for the 60N-60S domain. d. Similar to c, but for the SEA domain. e. Model bias (multimodal mean from 48 models minus 
the observational mean). Stippled areas indicate the agreement by 70% of models on the sign of bias. f. Similar to e, but for the 
SEA domain. 

 

5.3.5 Winds 
 
Next, we evaluate the 850hPa annual mean and 
seasonal winds over the global and SEA domains 
to check if there are any CMIP6 GCMs with 
unrealistic wind patterns, especially in regard to 
the monsoonal wind flow patterns. 

The results of Tangang et al., (2019) indicate 
anomalously strong easterlies over Papua in JJA, 
as well as anomalous westerlies around the tip of 
Sumatra that extend to the Malay Peninsula. 
McSweeney et al., (2015) examined 39 CMIP5 

GCMs and noted that models were generally able 
to simulate the Somali jet in terms of having the 
highest wind speeds near the core, as well as a 
predominantly westerly flow over India that turns 
south-westerly over the Bay of Bengal, then 
westerly over Indochina and turning southerly 
west of the Philippines.  

A small number of models exhibited an unrealistic 
feature of the winds turning southerly west of 
continental Southeast Asia. Some models were 
also noted for a monsoon flow that was too weak 
(e.g. in the region of the Somali jet).

 



 

 
Figure 5.10: 1995-2014 annual mean 850hPa JJA winds in reanalysis (a, b) and models (c, d). a. Mean of JRA-55, ERA5 and 
MERRA2  for the 60N-60S domain. b. Similar to a, but for the SEA domain. c. Multimodel mean winds from 49 CMIP6 models 
for the 60N-60S domain. d. Similar to c, but for the SEA domain. e. Model bias (multimodel mean from 49 models minus the 
observational mean). Stippled areas indicate the agreement by 70% of models on the sign of bias. f. Similar to e, but for the 
SEA domain. 

 

 
These observational features can be seen in 
Figure 5.10a, b. Figure 5.10c, d is broadly 
consistent with the notion that models are 
generally able to simulate the South-westerly 
monsoon. Models exhibit a diversity of responses 
with regard to the strength of the Somali Jet, being 
slightly weaker on average (Figure 5.10e). Here a 
positive bias in speed is shown to the north over 
the Arabian Sea and northern India.  

Such characteristic anticyclonic bias is linked to 
the tendency for the westerly flow to extend too 
strongly over Southeast Asia into the South China 
Sea associated with an eastward shift and 
weakening of the Western North Pacific 
Subtropical High (WNPSH).  

Over the East of India, there is a robust northward 
shift of wind speeds near Sri Lanka upstream of a 

robust increase in winds over the Malay Peninsula 
and Borneo and decrease in winds closer to New 
Guinea. Figure f indicates that the anomalously 
strong westerlies near the tip of Sumatra seen in 
the CMIP5 multi-model mean remains a common 
issue in CMIP6 GCMs. The representation of the 
monsoon in the individual models (not shown) is 
generally realistic.  

A key feature of DJF circulation over the Maritime 
Continent is the turning of the northeasterly winds 
over the South China sea towards the Malay 
Peninsula, and its subsequent convergence with 
westerlies from the Indian ocean (McSweeney et 
al., 2015). This is generally captured by the multi-
model mean (Figure 5.11a, d).

 



 

 

 
 Figure 5.11: As in Fig. 5.10, but for DJF. 

 

 
In their analysis of the ensemble mean of 11 
CMIP5 GCMs, Tangang et al. (2019) noted an 
easterly component of wind that was too strong 
over Indochina in DJF, and anomalously strong 
easterlies over Papua. As for individual models, 
McSweeney et al., (2015) presented results from 
38 CMIP5 GCMs and noted that some models had 
an anomalously strong easterly component, such 
that the flow was directed towards Vietnam rather 
than the Malay Peninsula.  

Anomalously strong easterlies remain a robust 
bias in CMIP6 models (Figure 5.11d, f), together 

with anomalously strong outflows over the Indian 
Ocean (net reduction in wind speed).  

Figure 5.12a, b shows the range of model ws850 
values along with that from the reanalyses. 
Overall, we find that the models simulate ws850 
satisfactorily. The median ws850 values are lower 
in SEA as compared to GLOB. However, in some 
cases, the RMSE of ws850 in SEA can exceed 
that of GLOB (Figure 5.12c, d). Pattern correlation 
of ws850 is generally quite high for GLOB but falls 
over SEA (below 0.6 in one case), as can be seen 
in Figure 5.12e, f. 

 



 

 
Figure 5.12: (a) Boxplot of wind speed at 850 hPa (ws850) over GLOB in CMIP6 models for DJF and JJA. Values for three 
reanalyses are shown with symbols.  (c) Boxplots of RMSE of ws850 against values computed with the ensemble mean of the 
three reanalyses. (e) As in (c), but for pattern correlation. (b, d, f) as in (a, c, e), but over SEA.  

 

 

 



 

 
Figure 5.13: Model performance (better to worse) in ws850 as measured by RMSE over (a) GLOB and (b) SEA. (c-d). As in (a-
b), but for pattern correlation.  



 

Model simulations of ws850 are generally better 
over GLOB as compared to over SEA. Some 
notable outliers over SEA are NorCPM1, which 
has anomalously strong winds over Indochina and 
its nearby latitudinal region in DJF, and the INM 
models (INM-CM4-8 and INM-CM5-0), where the 
south-westerly monsoonal flow in JJA is weaker 
and/or angled too far north (above the South 
China Sea). Based on RMSE over the SEA 
domain for the 2 seasons, the bottom 5 models 
are BCC-ESM1, CESM2-FV2, INM-CM4-8, MCM-
UA-1-0, and NorCPM1. Based on PCC the bottom 
5 models are MIROC-ES2L, MCM-UA-1-0, INM-
CM5-0, NorCPM1, and INM-CM4-8. 

In summary, we find that, many of the CMIP6 
GCMs are able to simulate the large-scale 
patterns of rainfall, temperature, winds, humidity 
and psl over the global and SEA domains, on 
annual and seasonal timescales. However, there 
are some biases in each of these variables that 
are regionally and seasonally dependent. 
Although many models are found to perform quite 
well, some are found to perform unsatisfactorily to 
an extent that we don’t have enough confidence 
in them to consider for our dynamical 
downscaling. Some of the models that we have 
identified to discard are: INM-CM4-8, INM-CM5-0, 
NorCPM1, MCM-UA-1-0, and MIROC-ES2L. 
 

5.4 Evaluation of Key Climate 
Processes 

In this section we present the evaluation of key 
climate processes that are important drivers of 
weather and climate over Maritime Continent 
region, namely, monsoon, ENSO, IOD, equatorial 
Pacific cold tongue, northeast monsoon surge, 
and MJO  from the CMIP6 GCMs with the same 
objective as the in section above, i.e. to identify 
the GCMs that show consistently poor 

performance and hence may not be considered fit 
for downscaling. 
 

5.4.1 Monsoon 

Monsoon rainfall, associated with changes in wind 
circulation and the north-south movement of the 
ITCZ dominates the seasonal variations of rainfall 
in the tropics. The easterlies in the southern 
hemisphere and westerlies in the northern 
hemisphere, along with the cross-equatorial flow 
over the western equatorial Indian ocean are 
notable features of the boreal summer monsoon 
(Figure 5.10a). Similarly, the corresponding wind 
circulation features can be seen from Figure 5.11a 
that are associated with the boreal winter 
monsoons. Monsoons have a key role in shaping 
the weather and climate of the MC domain. The 
MC domain is affected by the boreal summer 
monsoon (JJA; southwest monsoon) as well as 
the boreal winter monsoon (DJF; northeast 
monsoon). 

Seasonal migration of ITCZ leads to climatological 
rainfall peaks during the monsoon season in 
Northern and Southern hemispheres. Figure 5.14 
(top left) shows the observed migration of 
monsoon rainfall for the 1995-2014 period with NH 
peaks during JJAS and SH peaks in DJFM. Note 
the more persistent wet all year around in the 
equatorial (+/- 5 degrees) region. Also, the NH 
monsoon extends further north compared to the 
SH monsoon extension southward. 

CMIP6 models on average simulate the seasonal 
migration of the ITCZ, but individual models can 
show significant systematic errors, such as 
shifting the monsoonal peaks in time (lagged) or 
in space (not reaching as far north/south). Many 
models are too intense (both in boreal and austral 
summer) plus there are shifts in peaks, but not 
necessarily in equatorial tropics. 

 

 

 

 

 

 

 

 



 

 
Figure 5.14: The time-latitudinal progression of zonally-averaged (80-160E) climatological monthly precipitation (i.e. passage of 
the ITCZ-monsoon rain belt) for the period 1995-2014. (Top row)  Multi-satellite-mean observations from the FROGS database 
(FROGS-Sat), the multi-model mean (MMM) and the bias in the MMM (MMM-Bias). The 48 CMIP6 models are individually shown 
in subsequent rows. Also shown is the pattern correlation coefficient (PCC) value between each model and FROGS computed 
over the cyan box (June-October, 10-20N, representing the boreal summer monsoon season). The area average represented by 
the cyan box is shown for FROGs (8.1 mm/day). 



 

Figure 5.15 shows the ranked pattern correlation 
values comparing zonally-averaged climatological 
monthly rainfall from each CMIP6 GCM with 
satellite observations for the June to October 
period across 10-20N. It can be seen from the 
figure that many of the CMIP6 GCMs perform 

quite well in simulating monsoons with around 18 
of them having PCC of more than 0.9. Based on 
the monsoon PCC shown here the bottom 5 
models are MIROC-ES2L, INM-CM4-8, IPSL-
CM6A-LR, NESM3, and INM-CM5-0. 

 

 
Figure 5.15: Ranked pattern correlation values comparing zonally-averaged climatological monthly rainfall from each model 
with satellite observations for the boreal summer monsoon period (June to October) across 10-20N. 

 
In Figure 5.16 we show the normalised model bias 
in area average rainfall during the Jun-Oct period 
relative to satellite observations. We can see from 
the figure that 38/48 models show wet bias, with a 
considerable spread that varies in the range 2-
36%. Overall, the multi-model mean (MMM) 
shows 9% wet bias, and shows really good pattern 

correlation (0.966; Figure 5.15). This is consistent 
with other studies (e.g., Martin et al. 2021) that 
show models tend to underestimate rainfall over 
the Indonesian island region in JJA and 
overestimate it over the region of the South China 
Sea and western Pacific (this is particularly 
prevalent in the HadGEM3 family of models).  



 

 
 

 
Figure 5.16: Normalised model bias in areal average rainfall during the boreal summer monsoon period (Jun-Oct) relative to 
satellite observations across 10-20N. 

 

 
Unlike the off-equatorial tropics, the ITCZ crosses 
the equatorial zone both during the northward and 
southward movement, hence providing a 
somewhat different flavour to the monsoons. In 
Figure 5.17 we show the climatological (1995-
2014) annual cycle of rainfall area-averaged over 
the equatorial region 80–160E, -2.25–2.25N from 
observations and from CMIP6. For the CMIP6 
GCMs we show the multimodel mean (MMM), 

multimodel maximum (MMX) and multimodel 
minimum (MMN). Although there is a large 
diversity in the models as can be seen from the 
difference between the MMX and MMN, overall, 
the MMM resembles the both satellite rainfall 
(FROGS) over the region and the station-based 
rainfall annual cycle quite well. This is further 
confirmed from the DJF spatial pattern of rainfall 
from FROGS and MMM. 

 



 

 

 
Figure 5.17: (Top panel) Climatological (1995-2014) annual cycle of rainfall area-averaged over the equatorial region 80–160E, 
-2.25–2.25N in the FROGS multi-satellite and CMIP6 multimodel mean (MMM), multimodel maximum (MMX) and multimodel 
minimum (MMN). The climatological annual cycle over Singapore (28-station average) is shown for comparison. The bottom 
panel shows the DJF rainfall from FROGS and MMM. 

 
 
 

Monsoons are traditionally associated with a 
reversal of low-level winds, turning from easterlies 
to monsoon westerlies upon the arrival of the first 
strong monsoon surge. Figure 5.18 shows this for 
regions north and south of the equator indicating 
the climatological monsoon onset to be in May for 
the northern hemisphere and December for the 
southern hemisphere monsoon periods. Looking 
at the equator, the passing over of the ITCZ twice 

a year creates a different situation with winds 
being (a) generally weak throughout the year and 
(b) only weak wind reversals with mostly 
climatological weak westerlies for most months. 
The multi-model mean from the CMIP6 GCMs 
performs quite well in simulating the overall 
annual cycle and the May and December 
monsoon onsets in the northern and southern 
hemispheres, respectively. 

 

 
 



 

 
Figure 5.18: Domain mean of climatological (1995-2014) zonal wind at 850 hPa over (a) 110E to 115E, 5N to 10N (b) 100E to 
110E, 5S to 5N, (c) 110E to 120E, 10S to 5S. The three domains are shown in the inset in (a). The shading shows the full range 
of the reference reanalysis datasets (ERA5, JRA55, MERRA2) as well as 49 CMIP6 models. 

  



 

5.4.2 ENSO 

ENSO is associated with the equatorial Pacific 
Ocean variability influencing atmospheric 
processes remotely and thereby one of the most 
important climate drivers that influences year to 
year variability of temperature and rainfall across 
the Maritime Continent (Juneng and Tangang 
2005). Across the Indo-Pacific Ocean, ENSO 
induces a zonal dipole pattern of precipitation 
variability, i.e., positive variability in the Tropical 
Pacific (TP) and “horseshoe” shaped negative 
variability towards the MC (Langenbrunner and 
Neelin 2013). That is, TP becomes wetter than 
normal while MC becomes drier. Physically, 
ENSO-rainfall teleconnection over the MC is part 
of the ENSO-induced circulation responses over 
the tropics (Wang et al. 2003; Lau and Nath 2003; 
Stuecker et al. 2015).  

In boreal summer when El Niño develops, a 
sequence of evolution begins with the eastward 
shifting of Walker Circulation due to the 
anomalous warming in eastern Pacific. The shift 
suppresses convection over the MC (also 
weakens Asian–Australian Monsoon) and 
enhances convection in the Central Pacific. Also 
note that the ENSO evolution during summer 
depends on what has happened in the previous 
boreal winter.  

Here we investigate GCM’s performance on 
ENSO, and we mainly focus on the climatology of 
ENSO amplitude, frequency, and its 
teleconnection. ENSO also varies from decade to 
decade, not only in amplitude and frequency 
(Wittenberg 2009) but also in its diversity and 
asymmetry characteristics (Chen et al. 2017). To 
provide a more reliable evaluation for ENSO 
interannual variability, we choose a longer 30-year 
period (1985-2014) as the study period instead of 
using 1995-2014 (20-year chosen by IPCC AR6). 

ENSO Amplitude 

Here as part of the evaluation for regional 
downscaling, we briefly investigate whether 
CMIP6 models can simulate reasonable realistic 
amplitude for ENSO. ENSO amplitude is normally 
represented using the DJF season standard 
deviation of the Nino3.4 index. This amplitude 
varies largely across different ENSO events (e.g., 
weak, moderate, and extreme events) as part of 

the natural variability of the ocean state. 
Additionally, simulations of these events show 
variations across these climate models (e.g, Chen 
et al. 2017) which originate from model-internal 
sources. Future projection for ENSO amplitude is 
also very uncertain (e.g., Beobide-Arsuaga et al. 
2021) because of the difficulties in estimating how 
the natural variability might change as well as the 
remote teleconnections associated with ENSO.  

As can be seen from Figure 5.19, ENSO 
amplitude average from observation and 
reanalysis is 1.13°C. Model mean ENSO 
amplitude is 1.19°C, which is very close to the 
observation. We do notice a large spread across 
individual models, from very low (around 0.5°C) or 
very high (over 2°C) ENSO amplitude. Based on 
ENSO amplitude the bottom 6 models are INM-
CM4-8, CNRM-CM6-1-HR, INM-CM5-0, CESM2-
FV2, MIROC-ES2L, and NorESM2-MM. 
 

ENSO Frequency 

ENSO generally occurs every 2 to 7 years (Cane 
and Zebiak, 1985). Studies suggested that 
extreme El Niño and La Niña events in CMIP5 
models will occur more frequently in a changing 
climate (Cai et al. 2014, 2015). However, as to 
frequency of all ENSO events, many studies 
concluded that ENSO frequency changes are 
strongly model-dependent, and the model 
consensus is not robust on how ENSO frequency 
will change in a changing climate (Guilyardi 
(2006), Callahan et al. (2021)).  

Given that ENSO tends to peak during boreal 
winter (DJF season), here we use the index 
Y=DJF season averaged Niño3.4 anomaly, and 
we define a threshold TH=0.6 X standard 
deviation of Y. Thus a given year is considered to 
be in an El Niño state when Y>TH. The year in a 
La Niña state is when Y<-TH. The year in the 
neutral state is when -TH<=Y<=TH. Note that we 
classify individual years instead of months. Also 
note that we do not use a fixed threshold rather a 
model-dependent threshold. For HadISST, the 
threshold is 0.68°C, ERA5’s threshold is 0.74°C, 
and MERRA2’s threshold is 0.68°C.  

We define the frequency of El Niño years (FEN) 
as the number of El Niño years divided by the total 
number of years. We also define the frequency of 
La Niña years (FLN) and the frequency of neutral 



 

years (FNEU) in a similar way, and 
FEN+FLN+FNEU=1. It is known that El Niño 
occurs every 2 to 7 years, such that 
0.14<FEN<0.5. As can be seen from Figure 5.20, 
from observations and reanalysis, for El Niño, 
observation mean frequency is 0.3. For models, 
multi-model mean for El Niño FEN_model=0.29, 

which is very close to the observation and 
reanalysis. Models have a spread as to the 
frequency, from 0.15 to 0.4. Based on the ENSO 
frequency the bottom few models are KACE-1-0-
G, CanESM5, IPSL-CM6A-LR, CESM2-WACCM-
FV2, FGOALS-g3, and GISS-E2-1-G-CC.

 

 

 
Figure 5.19: ENSO amplitude defined as standard deviation of Nino3.4 index (1985-2014 DJF mean). 
 

 

 
Figure 5.20: The frequency of El Niño for 47 CMIP6 GCMs and from observations and reanalysis from 1985 to 2014. Also 
shown are the ensemble mean for models and for observations and reanalysis. 

 
 

ENSO Teleconnection 
 
ENSO has impacts on worldwide precipitation 
variabilities (Ropelewski and Halpert 1987). 
Across the Indo-Pacific Ocean, a zonal dipole 

pattern of precipitation variability occurs during El 
Niño, i.e., positive variability in the Tropical Pacific 
(TP) and “horseshoe” shaped negative variability 
towards the Maritime Continent (MC) 
(Langenbrunner and Neelin 2013). That is, TP 



 

becomes wetter than normal while MC becomes 
drier. In boreal summer when El Niño develops, a 
sequence of evolution begins with the eastward 
shifting of Walker Circulation due to the 
anomalous warming in eastern Pacific. The shift 
suppresses convection over the MC (also 
weakens Asian–Australian Monsoon) and 
enhances convection in the Central Pacific (Wang 
et al. 2003; Lau and Nath 2003; Stuecker et al. 
2015).  

As to the model performance on the ENSO 
teleconnection over the MC and Western Pacific, 
both CMIP5 and CMIP6 models tend to 
underestimate the negative rainfall teleconnection 
over the Central Maritime Continent but 
overestimate the positive ENSO rainfall 
teleconnection in the western Pacific and Eastern 
Maritime Continent (Jiang et al. 2022). Here, as 
part of the model evaluation for regional 
downscaling, we evaluate the performance of 
ENSO-rainfall teleconnection over the Tropical 
Pacific and the Maritime Continent in CMIP6 

models and show it in Figure 5.21. We define the 
domain averaged rainfall and calculate the lag-0 
correlation and covariance between the rainfall 
and the Niño3.4 TS anomaly (divided by one 
standard deviation of SST to only retain the pr unit 
of mm/day). We use the HadISST ts and GPCP 
rainfall as the observation benchmark.  

We find that models perform well for the TP 
region. However, models overestimate the rainfall 
variability over the eastern MC but underestimate 
the El Niño-induced rainfall variability over the 
central MC. It is due to the westward extension of 
the cold tongue bias that pushes the surface 
temperature and rainfall variability from the 
western Pacific to the MC. For the CMC during the 
JJA season, observed rainfall variability is -0.51 
mm/day, and model variability is -0.26 mm/day 
(0.25 mm/day weaker than the observation). 
During the DJF season, observed rainfall 
variability is -0.81 mm/day, and model variability is 
-0.46 mm/day (0.35 mm/day weaker than the 
observation).

 

 
Figure 5.21: ENSO-rainfall teleconnection in the observation and CMIP6 models. a. Observed global ENSO-precipitation 
correlation coefficient during boreal summer (JJA). Here the correlation coefficient is calculated between the anomalous 
precipitation (pr) and Niño3.4 sea surface temperature (TS). Stippled area indicates significant correlation with p-value<0.01. 
Defined domains of Central Maritime Continent (CMC) (black dashed box), Eastern Maritime Continent (EMC) (green box), and 
tropical Pacific (TP)(blue dashed box) are shown. b. similar to a, but focusing on the MC. c-e shows the model performance as 
to the ENSO-rainfall teleconnection. c. 12-month covariance between the Niño3.4 TS and the CMC domain-averaged 



 

precipitation. Observations (GPCP, black curve), reanalysis (ERA5, green dashed curve), and the multi-model mean of 32 
CMIP6 models for the historical period (blue curve) are shown. The shade covers the 95% model range. d. similar to c but 
showing the EMC domain. e. similar to c but showing the TP domain. 
 

 

5.4.3 IOD 
 
The Maritime Continent is in between the Indian 
Ocean and Pacific Ocean and is affected by the 
ocean state in both. Hence, we also evaluate 
model performance over the Indian Ocean. We 
define the IODe index =ts averaged over the 
eastern IO [90E-110E, 10S-0S]. IODw index= ts 
averaged over the western IO [50E-70E, 10S-
10N]. Then we define the IODemw index=IODe 
minus IODw, which indicates the zonal ts gradient.  

We analyzed the amplitude of IOD, defined as one 
standard deviation of the monthly ts anomaly in 
IODemw.  Observed IOD amplitude is 0.4°C, 
model mean IOD amplitude is 0.52°C (0.12°C 
stronger). Here models tend to have slightly 
stronger variability than the observation (Figure 
5.22). Based on IOD amplitude the bottom few 
models are the 2 INM models, TAIESM-1, SAM0-
UNICON, and CESM-FV2.  

 
Figure 5.22: IOD amplitude in observations (mean in black line) and models (mean in black line). IOD amplitude is calculated 
using one standard deviation of the IODemw index (annual mean, 1985-2014). 
 

 

5.4.4 Equatorial Pacific Cold Tongue 
 
Here we define an index to measure the overall 
equatorial Pacific ts. TPI =whole equatorial Pacific 
averaged over [150E-280E 5N-5S]. Within the TP, 
the warm pool is on the western side, and the cold 
tongue is on the eastern side. Here we define the 
CTI index = averaged ts over the cold tongue 
region [180°E-270°E,5°N-5°S]. The zonal ts 
gradient is also an important dynamical feature to 
simulate. Here we define a CTGI=cold tongue 
gradient index =CTI-TPI, annual mean from 1985 

to 2014. CTGI tells the cold tongue ts relative to 
the whole equatorial Pacific. annual mean 
observation CTGI is -0.54°C. Model mean CTGI is 
-0.62°C (-0.08°C slightly stronger cold tongue 
relative to the whole TP, also indicating a stronger 
zonal ts difference) (Figure 5.23). This stronger 
cold tongue in models is associated with a 
stronger zonal wind and westward extension of 
the cold tongue into the warm pool. Based on the 
equatorial Pacific cold tongue bias, the bottom few 
models are MPI-ESM1-2-HR, NorESM2-LM, 
GISS-E2-1-G, and GISS-E2-1-G-CC.

  

 



 

 
Figure 5.23: Pacific cold tongue gradient index (CTGI) in observation and models (1985-2014). The negative value indicates 
the eastern cold tongue area is cooler than the western warm pool.  

 
 

5.4.5 Northeast Monsoon Surge 
 
Northeast monsoon surges are a key synoptic 
feature of the boreal winter circulation over the 
Maritime Continent (e.g. Chang et al., 2005) and 
can lead to extreme rainfall. These surges can 
also be enhanced by the presence of a favourable 
phase of the MJO (e.g. Lim et al., 2017) and might 
also aid the MJO in its passage across the 
Maritime Continent (Pang et al., 2018). Given the 
importance of boreal winter monsoon cold surges 
to the weather and climate of SEA, the 
performance of CMIP6 models in simulating cold 
surges is quite relevant to the evaluation and 
subsequent sub-selection for dynamical 
downscaling.  

Most of the existing literature on boreal winter cold 
surges over the Maritime Continent have focused 
on their observed characteristics, with relatively 
little mentioned on their simulation in models. An 
earlier analysis of CMIP5 models (McSweeney et 
al., Appendix 3 of V2) reported that the easterly 
component of surge winds were too strong in 
some models relative to the northerly component, 
with the flow directed towards Vietnam rather than 
southwards, while a more recent study by Xavier 
et al (2020) found that the UKMO Global 
Atmosphere 7.0 (GA7.0) and Global Coupled 3.0 
(GC3.0) configurations of the Unified Model yield 
a dry bias in the simulation of surge rainfall.  

In Figure 5.24 we present the evaluation of cold 
surge simulations in CMIP6 models, defined in 
Chapter 3.7. Based on reanalysis data, one can 
see from Figure 5.24a that the north-easterly 
winds over the South China Sea turn north-
westerly after crossing the equator, together with 
high rainfall, especially over Philippines and 
Borneo. Figure 5.24b shows that the models are 
able to capture the general flow of the surge 
winds, including the turning at the equator. The 
easterly bias flagged in (McSweeney et al., 
Appendix 3 of V2) is not immediately obvious in 
the individual models (figure not shown), with the 
caveat that their analysis was performed using a 
fixed wind speed threshold, whereas this analysis 
uses a threshold that is tied to the mean and 
standard deviation of each model. 

Models generally have a wet bias over Sulawesi 
and a dry bias over the Philippines (Figure 5.24c), 
possibly related to the model resolution of the 
topography of the Philippines. Models generally 
underestimate the rainfall over the Indian Ocean, 
with the multi-model anomalous winds directed 
over the Indian subcontinent. Over the Western 
Maritime Continent, rainfall bias can be either 
positive or negative. Models generally 
underestimate the percentage of surge days in 
NDJF (19% in REF), with 32 out of 36 models 
used for this analysis, exhibiting frequencies from 
15 to 19%, and four models below 15%: AWI-
ESM-1-1-LR (14%), FGOALS-f3-L (14%), KACE-
1-0-G (12%) and TaiESM1 (8%). 



 

 

 
Figure 5.24: (a) Precipitation and 850 hPa winds composited over surge days in REF (winds and PSL are derived from the 
ensemble mean of ERA5, MERRA2, and JRA55, precipitation the ensemble mean of 5 datasets from FROGs: CMORPH, 
GSMAP, IMERG, PERSIANN-CDR, and TRMM 3B42). (b) As in (a), but for 36 CMIP6 models. (c) Model bias in surge 
precipitation and winds (i.e. (b) - (a)). 

  



 

5.4.6 MJO 
 
The Madden-Julian Oscillation (MJO; Madden & 
Julian, 1971, 1972), characterized by an 
eastward-propagating large-scale band of 
convection from the Indian Ocean to the central 
Pacific, is one of the important climate drivers 
affecting global weather and climate, and 
especially the Maritime continent region (e.g., Lim 
et al. 2017). However, representing the MJO in 
climate models has been a challenge. In a recent 
study, Chen et al. (2021) evaluated the simulation 
of MJO in CMIP5 and CMIP6 models and reported 
that the MJO characteristics are better reproduced 
in CMIP6 with a corresponding decrease in inter-
model spread in biases. However, there still are 
existing biases in CMIP6 models, such as, 
underestimation of frequency of initiation, 
underestimation of amplitude, and overestimation 
of the MC barrier effect on MJO propagation 
speeds. From CMIP5 to CMIP6, while some 
models have improved skills, some others have 
degraded. Le et al., (2021) reported that the MJO-
related precipitation over the MC is still 
underestimated in CMIP6 models. 

While various metrics have been used in the 
literature to evaluate the performance skill in 
models, one of the widely used metrics used for 
evaluation is the Eastward/Westward power ratio 
(E/W ratio hereafter). This metric indicates the 
robustness of eastward propagating feature of the 
MJO (Zhang and Hendon 1997), and has been 
widely used in observational (e.g., Zhang and 
Hendon 1997; Hendon et al. 1999) and modelling 
studies (e.g., Lin et al. 2006; Kim et al. 2009). In 
Figure 22 we show the E/W ratio for the months 
November-April over the period 1995-2014 using 
precipitation from GPCP v1.3 as the baseline and 
compare the same with CMIP6 models.  

While the observed ratio is around 2.8, in models 
it can vary from less than 1 (westward 
propagating) to more than 5 (strongly eastward 
propagating). From this figure, some CMIP6 
models, namely, CanESM5, INM-CM4-8, and 
INM-CM5-0 can clearly be discarded as they show 
a westward propagating MJO. Most of the models 
show an E/W ratio lower than observed, and 
hence a slower eastward propagation, maybe due 
to stronger barrier effect of the MC. 

 

Figure 5.25: East-West power ratio of CMIP6 GCMs for November-April from 1995 to 2014 compared to GPCP v1.3. 
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5.5 Model Independence 
 
Following Brunner et al (2020), Table 5.3 shows 
the CMIP model families built on similar internal 
schemes for atmosphere, ocean, etc. It has been 
shown in some past studies that the CMIP model 

archive is not an archive of completely 
independent models. This raises the question 
about independent realisations of future climates 
and in general the understanding is that the CMIP 
ensemble is a somewhat ‘degenerated’ ensemble 
of future states. 

 
Table 5.3: CMIP6 model families based on the genealogy reported in Brunner et al. (2020) using 33 models. The 
genealogy is computed based on the global mean surface-air temperature and mean sea level pressure. Models in 
bold were selected for downscaling. 

Model 
Family 

Models belonging to specific family Common family feature  

1 CanESM5-CanOE, CanESM5   
Built within ONE modelling centre 
on similar schemes 

2 CESM2-WACCM, CESM2, NorESM2-MM, FIO-ESM-2-0  
Built on NCAR’s atmosphere 
model 

3 CNRM-ESM2-1, CNRM-CM6-1, CNRM-CM6-1-HR   
Built within ONE modelling centre 
on similar schemes 

4 EC-Earth3-Veg, EC-Earth3  
Built within ONE modelling centre 
on similar schemes 

5 FGOALS-f3-L, FGOALS-g3   
Built within ONE modelling centre 
on similar schemes 

6 INM-CM5-0, INM-CM4-8   
Built within ONE modelling centre 
on similar schemes 

7 MIROC-ES2L, MIROC6   
Built within ONE modelling centre 
on similar schemes 

8 MPI-ESM1-2-LR, MPI-ESM1-2-HR, AWI-CM1-1-MR, NESM3  
All using ECHAM-like atmosphere 
model 

9 
UKESM1-0-LL, HadGEM3-GC31-LL, ACCESS-CM2, KACE-1-
0-G, ACCESS-ESM1-5  

All using the UM as a core 
atmospheric model system 

NA 
GFDL-CM4, GFDL-ESM4, MRI-ESM2-0, CAMS-CSM1-0, 
GISS-E2-1-G, BCC-CSM2-MR, IPSL-CM6A-LR, MCM-UA-1-0   

More distant association with 
some of the other families 

 

 
In order to provide a downscaling ensemble from 
as independent as possible GCMs, we have 
identified a number of models which are possible 
choices, and together with other sub-selection 
metrics might help identify the most suitable set of 
independent models to use for downscaling. 

5.6 Range of Future Projections 
and ECS 

As discussed in Chapter 4 (subsection 4.2.1), the 
Equilibrium Climate Sensitivity (ECS) is defined as 
the global- and annual-mean near-surface air 
temperature rise that is expected to occur 
eventually, once all the excess heat trapped (top-
of-atmosphere radiative imbalance) by the 
doubling of CO2 has been distributed evenly down 
into the deep ocean (i.e. when both the 

atmosphere and ocean have reached equilibrium 
with one another - a coupled equilibrium state). 

Many CMIP6 models exhibit an ECS of 5°C or 
higher (Zelinka et al., 2020), much higher than the 
upper value of the CMIP5 range of 4.5°C. Based 
on the analysis of Sherwood et al. (2020), the 
Likely Range now range in ECS was constrained 
to lie in the range 2.5 - 4.0°C, down from what was 
reported in AR5. The IPCC also narrowed the 
Very Likely Range of ECS to be between 2.0 to 
5.0°C, down from 1.0 to 6.0°C. The likely and very 
likely range of ECS in AR5 and AR6 are shown in 
Figure 5.26 for reference. 

Figure 5.27 shows the ECS from the various 
available CMIP6 GCMs. The wide range of ECS 
can be seen from the figure with models like those 
from the INM showing values of less than 2oC, 



 

whereas, there are models like CanESM5, 
CIESM, and HadGEM3-GC3-1-LL that have ECS 
values greater than 5.5oC. Ideally, we would like 

to span the range of ECS, while keeping other 
sub-selection dimensions under consideration, 
and also the AR6 constrained range. 

 

 
          Figure 5.26: Likely and very likely range of ECS in AR5 and AR6 

 

 
Figure 5.27: Equilibrium climate sensitivity of CMIP6 GCMs ranked high to low from left to right. The gray bars indicate models 
that we do not have full variable lists to analyze at the time of the V3 study.  

 



 

5.7 Data Availability 
 
For the purpose of our dynamical downscaling, we 
need 6-hourly profiles of temperature, zonal and 
meridional winds, and specific humidity (for initial 
conditions and lateral boundary conditions), 
surface pressure (for initial conditions), and 6-
hourly sea surface temperatures (for initial 
condition and lower boundary condition). We also 
required that model outputs were available at 20 
levels and up to at least a pressure level of 5 hPa. 
Where available we used the skin temperature 
(ts), else, a combination of surface air temperature 
(tas) and surface ocean temperature (tos).  

An important difference in the CMIP6 archive as 
compared to CMIP5 is that the sub-daily data is 
not a part of the core delivery of the DECK 
experiment as well as scenario-MIP. Hence, a lot 
of modelling groups chose not to save and upload 
sub-daily data to the Earth System Grid 
Federation (ESGF). Since we need sub-daily data 
for our dynamical downscaling, this criteria plays 
a crucial role for our sub-selection exercise. We 
also would like to flag this as a possible significant 
constraint for CORDEX dynamical downscaling 
experiments. 

At the time when we started the downscaling of 
CMIP6 GCMs in late 2020, very few GCMs had all 
the driving variables to run our downscaling 
simulations. In Table 5.1 we have highlighted the 
list of GCMs with availability of 6-hourly forcing 
fields. 

As an example of how data availability drives 
opportunities, we did consider using data from 

GFDL-CM4, CNRM-CM6-1-HR and HadGEM2-
MM models, but couldn’t access their data on the 
ESGF. Upon separate conversations with the 
modelling groups, we were also told that not all 
scenarios were simulated by these models. 

Based on our dynamical downscaling requirement 
of 6-hourly data for historical (1955-2014), and 3 
SSPs (SSP1-2.6, SSP2-4.5, and SSP5-8.5) for 
the required variables (hus, ps, ta, tos, ua, va) and 
pressure level data for at least 5hPa, the latest 
availability as of June 2023 is shown in Table 5.1. 
The table shows all models running ScenarioMIP 
and the ones highlighted are the ones having 6-
hourly data for the required variables. As can be 
seen from the table, only 10 models have all 4 
experiments covered. GCM data needs for V3 
dynamical downscaling may not be very different 
from that of the CORDEX community, and the 
availability of downscaling data from only a very 
few models shows that this could be a major 
constraint for the CORDEX community as well. It 
is to be noted that in CMIP5 there were many 
more GCMs with 6-hourly data needed for 
dynamical downscaling. 

 

5.8 Future climate change spread 
 
One additional dimension for sub-selection is to 
ensure that the smaller ensemble of GCMs still 
cover as much as possible the projected range of 
future climate change, especially for temperature 
and rainfall. Figure 5.28 shows the end-century 
change in rainfall and temperature over SEA from 
34 CMIP6 GCMs under SSP5-8.5. 

 
 



 

 
Figure 5.28: End-century (2080-2099) change (relative to 1995-2014) in rainfall and temperature over SEA from 34 CMIP6 
GCMs under SSP5-8.5 (red stars denote the chosen models in our study). 
 
 

5.9 Model Sub-selection 
 
Considering all the information from the previous 
sections, we selected initially 8 models for further 
consideration based on 5.3-5.8. For our sub-
selection process, we did not use any combined 
ranking system across all skills, rather, we mainly 
excluded very deficient looking models along the 
Tier-1 (climate variables) and Tier-2 (climate 
processes) skill metrics.  

Combined with desired spread in ECS, 
independence and spread of future climates, we 
landed on a set of 8 models. The final list of sub-
selected models are shown in Table 5.4 with the 
ones that made it to the final list of models that 

made available all the forcing data we need for 
downscaling highlighted in dark grey. 

While we were sub-selecting the CMIP6 GCMs 
the various modelling groups were still in the 
process of uploading data to the ESGF, so we 
included some of the models that also had partial 
data and were expected to upload all of it in time. 
Finally, because of data availability, 3 (CNRM-
CM6-1, GFDL-CM4, and HadGEM3-GC31-LL) 
out of the 8 models could not be used. Since we 
had planned to downscale at least 6 GCMs, we 
replaced HadGEM3-GC31-LL with a similar 
performing model (UKESM1-0-LL) from the same 
family. 

 



 

Table 5.4: List of sub-selected CMIP6 GCMs for V3 Dynamical Downscaling 

Sub-selected Model ECS Family End-century change over SEA under 

SSP5-8.5 scenario 

   Precipitation 

(mm/day) 

Temperature  

(oC) 

ACCESS-CM2 4.66 9 0.06 4.08 

CNRM-CM6-1 4.90 3 0.35 3.99 

EC-EARTH3 4.26 4 0.40 3.62 

GFDL-CM4 3.89 Independent 0.34 3.20 

HadGEM3-GC31-LL 5.44 9 -0.05 4.21 

MIROC6 2.60 7 0.27 2.52 

MPI-ESM1-2-HR 2.98 8 0.15 2.57 

NorESM2-MM 2.49 2 -0.05 2.93 

  

While we were sub-selecting the CMIP6 GCMs 
the various modelling groups were still in the 
process of uploading data to the ESGF, so we 
included some of the models that also had partial 
data and were expected to upload all of it in time. 
Finally, because of data availability, 3 (CNRM-
CM6-1, GFDL-CM4, and HadGEM3-GC31-LL) 
out of the 8 models could not be used. Since we 
had planned to downscale at least 6 GCMs, we 
replaced HadGEM3-GC31-LL with a similar 
performing model (UKESM1-0-LL) from the same 
family. 

 

5.10 Summary and Discussion 

For the purpose of regional climate change 
projections it is desirable to cover as much as 
possible various sources of uncertainty in order to 
design adaptation options that cover a wider 
range of climate change risks. In regard to 
regional climate change projections, a large 
amount of uncertainty often comes from the 
choice of scenario. It is advisable to either choose 
a low/high (as was done in V2) or a 
low/medium/high set of scenarios. In our case we 
chose a low/medium/high set of scenarios, 
namely, SSP1-2.6, SSP2-4.5, and SSP5-8.5 
(O’Neill et al. 2016). The SSP1-2.6 scenario 
approximately corresponds to the previous 
scenario generation Representative 
Concentration Pathway (RCP) 2.6, and was 
chosen as the low scenario for our study as it was 
designed to have a likely warming within the Paris 

Agreement target of below 2C warming level. 
SSP2-4.5, corresponds to RCP4.5, and was 
chosen as the medium scenario as it was 
designed as a middle-of-the-road scenario 
between the low and high ones. Regarding the 
high scenario, we had the choice of SSP3-7.0 vs 
SSP5-8.5, and we chose the latter because it 
corresponds to RCP8.5 that was used in V2, and 
is also likely to cover the upper end of the scenario 
uncertainty spectrum. Notably, as per the 
CORDEX experiment design for dynamical 
downscaling of CMIP6, SSP3-7.0 and SSP1-2.6 
scenarios were chosen to be downscaled first, 
followed by additional downscaling using the 
SSP2-4.5 scenario and/or the SSP5-8.5 scenario 
based on the availability of computational 
resources.   

A similar dynamical downscaling exercise is 
underway by the CORDEX-SEA community to 
produce high resolution climate change 
projections over SEA. There are several 
similarities and differences between the 2 efforts 
which make them highly complementary. 
Similarities include the choice of GCMs to be 
downscaled, large overlap in the downscaling 
domain and a common future scenario (SSP1-
2.6). Differences include: (1) horizontal resolution 
(our downscaling is conducted at 8 km for SEA 
and 2km for WMC), whereas, most of the 
CORDEX-SEA downscaling will be carried out at 
25 km horizontal resolution, (2) the N-S extent of 
our domains are very similar but our E-W extent is 
larger by around 20 degrees, (3) we use SSP5-
8.5 as the high scenario, whereas CORDEX-SEA 



 

uses SSP3-7.0, and (4) we use SINGV-RCM 
(Prasanna et al. 2023; submitted) and WRF (for a 
subset of the runs carried out using SINGV-RCM 
in order to assess downscaling uncertainty) as the 
downscaling model, whereas, CORDEX-SEA 
uses RegCM and WRF. 

It is to be noted that while our intention was to 
sample as many family of models as feasible 
based on existing literature on model genealogy, 
we decided to have 2 models from one family 
(ACCESS-CM2 and UKESM1-0-LL) for 2 
reasons: (1) the 2 models satisfied all our other 
criteria for model sub-selection, and (2) to analyse 
how similar or different can be the regional 
projections from 2 models of the same family, 
although they have different ocean models. 

It is also to be noted that one of our final models 
that was used for downscaling (UKESM1-0-LL) 
has an ECS of 5.36oC which is beyond the very 
likely range of IPCC AR6 (2oC-5oC). Since we 
think it is important to span the range of ECS, 
provided the other sub-selection criteria are met, 
and the model being a credible GCM from the 
UKMO, we decided to go ahead with it.  

In summary, we evaluated 49 CMIP6 GCMs for 
key climate variables and processes and using 
multiple dimensions of sub-selection we finally 
sub-selected 6 GCMs for dynamical downscaling 
over the 8 km SEA domain to produce the Third 
National Climate Change projections for 
Singapore.
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Appendix 
 
 
A5.1 Evaluations for seasonal rainfall 

 
Figure A5.1: 1995-2014 JJA season mean precipitation (pr) in observation (a,b) and models (c,d). a. FROGS datasets for the 
60N-60S domain. b. similar to a, but for the SEA domain. c. multi-model mean of pr from 48 CMIP6 models for the 60N-60S 
domain. d. similar to c, but for the SEA domain. e. model bias (e.g., multi-model mean from 48 models minus the observational 
mean). Stippled areas indicate the agreement by 70% of models. f. similar to e, but for the SEA domain. 

 



 

 
Figure A5.2: 1995-2014 DJF season mean precipitation (pr) in observation (a,b) and models (c,d). a. FROGS datasets for the 
60N-60S domain. b. similar to a, but for the SEA domain. c. multi-model mean of pr from 48 CMIP6 models for the 60N-60S 
domain. d. similar to c, but for the SEA domain. e. model bias (e.g., multi-model mean from 48 models minus the observational 
mean). Stippled areas indicate the agreement by 70% of models. f. similar to e, but for the SEA domain. 
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6.1 Introduction 

With the advancements in supercomputing over 
the recent decade, GCMs are now capable of 
global climate simulations of order of few 
hundred years at a grid resolution of 50-100 km 
(Eyring et al. 2016; Haarsma et al. 2016), which 
can be further downscaled using a regional 
climate model to a 10-20 km grid resolution to 
capture regional scales in detail (Zhao et al. 
2021; Gianotti et al. 2012; Qian 2008).  

While a grid resolution of 10-20 km is found to 
perform reasonably well in the extra tropical 
regions (Ban et al. 2014), it is difficult to justify if 
such a coarse grid resolution, where one needs 
convective parameterisation, will perform 
equally well in a tropical region like Singapore 
where the processes (e.g., localized 
thunderstorms) that characterise the local 
climate are small- scale (Ngo-Duc et a.l. 2017; 
Nguyen et al. 2022; Hariadi et al. 2022).  

Based on our own experience in weather 
modelling and the results from existing literature 
(Marsham et al. 2013; Birch et al. 2014; Prein et 
al. 2015; Huang et al. 2019; Dipankar et al. 
2020; Li et al. 2020a, 2020b; Dipankar et al. 
2021; Lee et al. 2021), we believe that a 
convection-permitting grid resolution, although 
considerably computationally expensive, is 
better suited to study the climate change impact 
on the city state Singapore. Our aim of this study 
is to document the development of a reliable and 
high-grid resolution climate modelling system 
over the Maritime continent for downscaling 
CMIP6 models for Singapore’s Third National 
Climate Change Projections (V3) studies. 

To customize and improve the model for the 
tropical region, particularly around Singapore, in 
partnership with the UK Met Office, CCRS-
Singapore developed a numerical weather 
prediction model called SINGV (Huang et al. 
2019), which is now run operationally by the 
Meteorological Service Singapore (MSS) for 
daily weather predictions. SINGV benefits from 
daily scrutiny by forecasters and its performance 
is assessed using a wide range of objective 
evaluation metrics. This is a very strong basis to 
establish Singapore variable grid resolution 
model (SINGV) as the regional climate model 
(RCM) of choice to complete the third National 
Climate Change projections (V3). 

High spatial resolution (~ 2-8 km) climate 
information is of much relevance to Singapore 

due to the size of the city-state. Due to the 
coarse grid resolutions of the GCMs (~ 50-100 
km), it is necessary to downscale the climate 
information from GCMs, to improve the 
understanding of climate processes at small-
scales that can be resolved by RCMs unlike 
GCMs. Therefore, simulating sufficiently very 
high resolution atmospheric variables (at km-
scale) around the Singapore – Malay Peninsula 
region (SG-domain) and a larger domain 
covering the entire Maritime Continent (MC-
domain) at 2km and 8km grid resolutions, 
respectively using ERA5 fields as a driving 
model, serves as a benchmark for SINGV-RCM 
simulations over the region to conduct 
Singapore’s Third National Climate Change 
Projections (V3). 

Earlier Studies done by Kendon et al. (2012, 
2014) showed, that the United Kingdom Met 
Office (UKMO) RCM simulated rainfall 
characteristics are better than using coarse‐grid 
resolution simulations from other models or 
using the same model at a high resolution of 1.5 
km, produced a much better results, a testimony 
to model skills when moving from RCM to 
convection enabling resolutions in UKMO 
model, which gives confidence to us that the 
SINGV-RCM shares the same infrastructure of 
UKMO model and better tuned to the Singapore 
region and tropics in general. 

In this study detailed analyses are done to 
investigate the SINGV-RCM model performance 
to reproduce the observed climate at all spatial 
and timescales. Model is tested with best 
possible dynamics and physics to fairly 
reproduce the observed diurnal cycle, observed 
spatial climatology and observed distribution of 
heavy rainfall and also tested for the evolution of 
the peak diurnal timing and intensity of rainfall. 

The contents of the manuscript are as follows, 
the description of data and modelling framework 
are dealt in section 2, section 3 examines the 
results and finally the summary and discussions 
are in section 4 respectively. 
 

6.2 SINGV Model setup 

In this section we present the details of the 
model set up of SINGV. Specifically, we present 
details on the modelling framework used, 
dynamics, physics and model versions used, the 
model nesting suite, observational data used for 



validation, and the reanalysis datasets used as 
forcing fields. 

6.2.1 Modelling framework 

The modelling experiments are conducted to 
explore SINGV’s potential as a Regional Climate 
Model (RCM) for the MC domain; previously 
several studies were conducted with the SINGV-
NWP system and found to have high skills in 
predicting the convection realistically over the 
Singapore region. (Huang et al. 2019; Dipankar 
et al. 2020; Doan et al. 2021). Results presented 
in this study are for two versions of SINGV 
namely, version v5.0 and the earlier version 
v4.1. SINGV v5.0 is based on the dynamical 
core of Unified Model (UM) version 11.1, and the 
Physics basis from the tropical version of the UM 
known as RA1T (Regional Atmosphere 1 – 
Tropical) (Bush et al. 2019). SINGV v5.0 is the 
version of the RCM proposed for the delivery of 
V3 study (Timbal et al. 2019). 

UK Met Office’s unified model (UM), a seamless 
modelling system in which largely the same 
model is used to simulate the atmosphere at all 
scales, from the large-scale global circulation to 
finer-scale grid resolution regional weather. This 
seamless system provides a consistent 
modelling approach and has significant 
advantages for nested modelling approach, in 
which high-grid resolution models are 
embedded within the coarser grid resolution 
models (Golding et al. 2014; Boutle et al. 2016; 
Bush et al. 2019), by enhancing the horizontal 
grid resolution a more detailed atmospheric 
simulations can be obtained (Golding et al. 
2014; Boutle et al. 2016; Bush et al. 2019).  The 
current modelling system which is, Singapore 
regional climate model (SINGV-RCM) to be 
used for the third National Climate Change 
projection studies (V3) is based on the UM 
modelling system. 

The nesting suite infrastructure of SINGV-RCM 
will be able to provide high-grid resolution 
precipitation simulation along with other 
atmospheric variables. ERA5 reanalysis output 
is used for initial condition (IC), lateral boundary 
conditions (LBC) and surface boundary (SST) to 

drive the SINGV Model in a nesting suite setup 
to achieve 8km and 2km grid resolutions. 
Additional experiments are also conducted at 
9km, 4.5km and 1.5km grid resolutions with an 
earlier version of SINGV-RCM (v4.1) and the 
results are then validated against the Satellite 
based observation to quantify the accuracy of 
the SINGV-RCM model’s skill in simulating the 
precipitation over the vicinity of SINGV-domain 
(SG-domain) and the entire Maritime Continent 
(MC-domain). The new version of SINGV (v5.0) 
and the previous version of SINGV (v4.1) differ 
majorly only in the surface ancillaries and a few 
minor changes in terms of physics and 
dynamics.  These minor changes in Physics 
won’t change the simulation results significantly. 

The dynamical core for the SINGV model used 
in this study is from the Met Office Unified model 
[UM v11.1 & v10.6] for the Singapore versions 
[SINGV v5.0 & v4.1] configured as a suite of 
models nested to one another and decreasing in 
domain size while increasing in model grid 
resolution. The current configuration of the suite 
ranges from 8km to 2km as one set with SINGV 
v5.0 and 9km to 4.5km and finally to 1.5km grid 
sizes as another set with SINGV v4.1, the lateral 
boundary conditions (LBCs) are from the ~31 km 
ERA5 reanalysis model data and are used to 
drive the next higher grid resolution nested 
model. Use of the same model for the nested 
suite means that treatment of the dynamics and 
the parameterised and resolved physics 
processes are consistent. 

The downscaling is performed using ERA5 initial 
condition (IC), lateral boundary conditions (LBC) 
and surface boundary (SST) at different 
horizontal grid resolutions nested to one another 
as shown by the schematic diagram (Figure 
6.1). The current version of SINGV-RCM (v5.0) 
tested for V3 domains are shown in solid boxes 
8 km (D1) and 2 km (D2) and a slightly earlier 
version of SINGV-RCM (v4.1), which was tested 
for different set of domains, are shown in red 
dashed boxes, 9 km and 4.5 km (D3), 1.5 km 
(D4) and a common domain for comparison of 
all results are shown by dotted and dashed box 
for MC and SG domains. 



Figure 6.1: Downscaling domains tested for V3 study. D1 (16.16 S – 24.08 N; 79.68 E – 160.248 E) is the 8 km domain, 
and D2 (7.29 S – 9.972 N; 93.16 E – 110.422 E) is the 2 km domain (in solid line). D3 (16.16 S – 24.08 N; 79.68 E – 160.248 
E) is the 9 km and 4.5 km domains and D4 (7.29 S – 9.972 N; 93.16 E – 110.422 E) is the 1.5 km domain (in dashed lines). 
Box for MC domain (-15-22N; 86-140E) and SG domain (-5-8N; 95-108E) selected for comparison of results for respective 
domains (in dotted & dashed line). 

 

6.2.2. Dynamics, Physics and model 
versions used in SINGV-RCM 
 
The SINGV-regional climate model (SINGV-
RCM) consists of key components of dynamics 
and physics, which are explained briefly in this 
section. 

The set of basic equations representing the 
model dynamics are non-hydrostatic finite 
difference models with full equations. The 
prognostic variables are horizontal and vertical 
wind components, potential temperature, 
pressure, density, specific humidity, cloud liquid 
water content etc. The integration domain is the 
entire Maritime continent (@8km grid resolution) 
and Singapore domain (@2km grid resolution) 
forced by the 8km domain output. The horizontal 
grid consists of a spherical latitude-longitude 
grid with Arakawa C-grid staggering of variables. 
The vertical grid consists of 80 levels extending 
from surface to 38.5km at the top, the levels are 
height-based hybrid-η vertical coordinate with 
Charney and Phillips (1953) grid staggering of 
variables. Semi-lagrangian is used to treat the 
advection term and semi-implicit method for time 
integration. The model time steps are roughly 
240 seconds (4mins) for 8km and 120 seconds 
(2mins) for 2km. Additional configurations are 

Maritime continent (@9km and @4.5km grid 
resolutions with model time steps 4mins & 
3mins) and Singapore domain (@1.5 km grid 
resolution @1min model time step). 

Some details of Physics options used in the 
model are given below. 

1. The cloud scheme is the Prognostic cloud 
fraction and condensate cloud scheme (PC2 
scheme) of Wilson et al. (2008a, b). 
Precipitation is treated by Wilson and Ballard 
(1999) single-moment bulk microphysics 
scheme, coupled with the PC2 cloud scheme. 

2. Radiation in the model is treated by Edwards 
and Slingo (1996) radiation scheme with non-
spherical ice spectral files with 6 absorption 
bands in the SW (shortwave) and 9 bands in 
the LW (Longwave). 

3. The Boundary Layer scheme includes a 
blending of 1D boundary-layer scheme for 
vertical mixing by Lock et al. (2000, 2001) 
and 2D scheme following Smagorinsky 
(1963). The Gravity wave drag is treated by 
Orographic scheme including a flow blocking 
scheme, which represents the effects of sub-
grid scale orography and the non-orographic 
spectral scheme is also included which 
represents the effect of gravity waves in the 



stratosphere and mesosphere. Land surface 
scheme used in the model is the Joint UK 
Land Environment Simulator (JULES) (Best 
et al. 2011) 4-layer soil model using 
Genuchten (1980) soil hydrology. 

Table 6.1 shows the details of the two different 
configurations with respect to model dynamics, 
physics and the actual model setup. 

Table 6.1: Model parameters and setup for two versions of SINGV-RCM 

Model 
SINGV-RCM (v5.0) current version 
used for V3 study 

SINGV-RCM (v4.1) previous version 
tested for V3 study 

Dynamics/ 
Physics 

(UM - Version 11.1) - End-Game 
Dynamical core with Physics package: 
RA1T 

(UM - Version 10.6) - End-Game 
Dynamical core with Physics package: RA 

Horizontal grid 
resolution 

SINGV-RCM: 8.0km Grids: 1120 x 560 
and 2.0 km Grids: 960 x 960. 

SINGV-RCM: 9.0km Grids: 642 x 546, 
4.5km Grids: 1304x1112 and 1.5km 
Grids: 1092 x 1026. 

Time steps 
8km: 240 seconds (4minutes); 2km: 120 
seconds (2minutes). 

9km: 240 seconds (4minutes); 4.5km: 180 
seconds (3minutes); 1.5km: 60 seconds 
(1minute). 

Surface ancillary 
files 

Tested for both CCI and IGBP Land-
surface ancillaries. CCI (Climate Change 
Initiative) from the European Space 
agency uses latest satellite data for 
preparing the latest ancillary files. 

Only IGBP Land-surface ancillaries. IGBP 
(international Geosphere-Biosphere 
Program) program produced the ancillary 
dataset, which is based on an old global 
dataset and 

Surface B. C. 

Sea Surface Temperature (SST) from 
ERA5 reanalysis interpolated to 8.0km 
and 2.0km grid resolutions of SINGV-
RCM. 

Sea Surface Temperature (SST) from 
ERA5 reanalysis interpolated to 9.0km, 
4.5km and 1.5km grid resolutions of 
SINGV-RCM. 

Driving model Global Driving Model: ERA5 (~31km) and ERA-Interim (~75km) 

SST update 
Frequency 

Updated 8 times daily @ 3-hourly frequency- (00, 03, 06, 09, 12, 15, 18, 21 UTC) 

Initial condition 
(I.C) 

ERA5-IC: Jan1, 2001 

Boundary 
condition (LBC) 

Global model: ERA5 – LBC @3hr interval (~31 km grid resolution) 

Vertical grid 
resolution 

L80: 80 levels (surface to ~38.5 km height) 

Simulation & 
Analysis period 

Simulation for periods: Jan1, 2001 to Jan31, 2001 (31 days) and analysis period: Jan2, 
2001 to Jan 30, 2001 (29days). 

Radiation 
Process 

Edwards-Slingo general 2-stream scheme (Edwards and Slingo 1996) 

Surface soil 
Process 

Joint UK Land Environment Simulator (JULES) (Best et al. 2011): 4-layer soil model 
using Genuchten (1980) soil hydrology 

PBL Process 
A 2D and 1D vertical blended scheme. 1D boundary-layer scheme for vertical mixing 
Lock et al. (2000, 2001) and 2D Smagorinsky scheme (Smagorinsky 1963) 

Microphysics Mixed-phase precipitation (Wilson and Ballard 1999) 

Gravity Wave 
Drag 

Gravity Wave drag due to orography 

 
The model setup is similar to the SINGV-NWP 
setup, except that it is a free run with the regular 
update of sea surface temperature at 3 hourly 

intervals. These similar SINGV-NWP 
configurations were also used in other 
applications like urban studies (Simon et al. 



2020; Doan et al. 2021), and it was 
demonstrated that the model configuration is 
evaluated well over this region. 

Before running the UM model on climate mode 
for multiple domains with incremental spatial-
grid resolutions, the ancillary files are prepared 
using the rose suite, central ancillary program 
(CAP) and Ancillary tool software (ANTS). The 
hierarchy of ancillary datasets are given by, 1) 
Land-Sea Mask, 2) Model orography, 3) Soil 
parameters, 4) Vegetation, surface type and 
Leaf Area Index, 5) Soil moisture and snow 
climatology, 6) Aerosol climatology, 7) SST and 
Sea Ice climatology. 

The ancillary data provides the external driving 
conditions for the model. Ancillary files hold data 
relating to model orography, soil and vegetation 
types, climatologies for sea surface temperature 
and sea ice amongst others. The CAP or ANTS 
creates the ancillary files by reading post-
processed source data and writing them in UM 
fields-file format. 
 

6.2.3 SINGV model nesting suite’s 
experimental setup     

The UM model is set to run on a multiple one-
way nesting mode. The set-up of both 
experiments (SINGV5.0 and SINGV4.1) are 
broadly similar except for horizontal grid 
resolutions. The increased grid resolution 
improves the model results considerably (Stein 
et al. 2014, 2015; Clark et al. 2016). The time 
step of each nesting domain must be reduced by 
a similar magnitude to the reduction in grid-
length, to ensure a similar level of stability and 
accuracy of the model dynamics. 

The vertical grid spacing of the nesting suite is 
kept at 80 levels as used in the operational 
model. The model turbulence parameterisation 
is not changed but kept as it is (as used in the 
operational model), which includes a blending of 
1D boundary-layer scheme for vertical mixing 
(Lock et al. 2000, 2001) and 3D Smagorinsky 
scheme (Smagorinsky 1963; Boutle et al. 2010). 
Both versions of SINGV-RCMs (SINGV4.1 and 
SINGV5.0) uses PC2 schemes. The critical 
relative humidity, a parameter used in the cloud 
scheme that represents the relative humidity at 
which clouds will start to form, varies from 0.96 
to 0.81 up to 14 levels from the surface and at 
0.8 (constant) above this level (total 80 levels) in 
this study. 

The domain is centred over Singapore (centre 
grid of latitude and longitude: 0.0N; 112.0E). The 
simulations were done for a month-long period 
(Jan1-Jan 31, 2001) and are compared with the 
observational dataset. The model versions used 
for these experiments (SINGV4.1 and 
SINGV5.0) are based on the Unified model (Vn. 
10.6 and Vn. 11.1) respectively. 
 

6.2.4 Observational data for validation 

The Integrated Multi-satellitE Retrievals for GPM 
(IMERG) algorithm combines information from 
the GPM satellite constellation to estimate 
precipitation over the majority of the Earth's 
surface (Huffman et al. 2020). In the latest 
Version 06 release of GPM-IMERG the 
algorithm fuses the early precipitation estimates 
collected during the operation of the TRMM 
satellite (2000 - 2015) with more recent 
precipitation estimates collected during 
operation of the GPM satellite (2014 - present). 
GPM-IMERG data are available from 2001 to 
present. These data are available on a 0.1° 
spatial grid between the coordinates 60°S to 
60°N and 0° to 360° E-W. The half-hourly data 
are processed to obtain hourly, daily and 
monthly value, when necessary, over the study 
period. 
 

6.2.5 Reanalysis data as forcing fields 

ERA5 is a global atmospheric reanalysis from 
1979 produced by the European Centre for 
Medium range Weather Forecasting (ECMWF), 
UK. Six hourly surface and vertical pressure 
fields for important meteorological variables at a 
grid resolution of 0.25° were downloaded from 
the data website and used as a forcing field for 
SINGV-RCM model simulations for the 8km-
Maritime continent domain. Hersbach et al. 
(2019, 2020) have documented the ERA5 
reanalysis product in detail. 
 

6.3 From SINGV-NWP to 
SINGV-RCM 

Here we discuss the evolution of SINGV-RCM 
from SINGV-NWP and the 
modifications/changes made to the model with 
the previous version of the model. We also 
discuss the result obtained from the sensitivity 
experiments done with the improved version 
compared to the previous version. The SINGV-



NWP model has been adapted to perform as 
SINGV-RCM for V3 studies. The adopted 
SINGV-RCM model is used for dynamical 
downscaling over the Maritime Continent (MC) 
and Singapore (SG) domains with the nesting 
suite to achieve an inner nest of higher grid 
resolution (to the order of a few kms). The details 
of the experimental setup using initial (IC) and 
boundary conditions (LBC) from ERA5 (~30km) 
to the MC domain (9km, 8km, 4.5km) and the 
SG-domain (2 km, 1.5km) is shown in Table 6.1. 
Multiple nests are used in the SINGV-RCM to 
achieve high-grid resolution climate simulation 
(downscaling of atmospheric variables), in which 
the 30km ERA5 is progressively nested in 
increasing grid resolutions over the maritime 
continent domain at 9km, 8km, 4.5km and finally 
to 2km and 1.5km over SG domain. As part of 
sensitivity studies, we conducted several 
experiments to assess model performance with 
respect to the model changes.  Some of them, 
which we believe are important, are listed below. 
 

6.3.1 Implementation of prescribed Diurnal 
cycle of SST 

SST fields are interpolated from the ERA5 data 
(~30km grid resolution) to the SINGV-RCM grid 
resolutions (9km, 8km, 4.5km, 2km and 1.5km) 
and updated every 3 hours. The ancillary files 
like SST and Sea ice are created using the X-
ancils application and are then linked in the 
namelist file of the RA1T science configuration 

file. The 3 days of 3 hourly input SST from the 
driving model and the corresponding hourly 
output from the SINGV-RCM are shown in 
Figure 6.2. Earlier TRMM based precipitation 
studies have brought out the importance of 
observed diurnal variability of precipitation over 
maritime continent a few to mention (Mori et al., 
2004; Ichikawa and Yasunari, 2006) and role of 
diurnal cycle of SST becomes more important 
over the maritime continent, as the diurnal 
changes in SSTs and the interaction of land-Sea 
breezes with the topographic changes to 
contribute to the diurnal precipitation changes. 
Recently, Dipankar et al. (2019) using data from 
the pilot field campaign of Years of the Maritime 
Continent (pre-YMC) Yoneyama and Zhang 
(2020) are used to understand the model biases, 
their results also support the earlier findings that 
the convection over coastal land and sea is 
strongly coupled. They also found that EC-SST 
fields when corrected for bias up to 2-degree K, 
found that the simulation improved in the 
representation of diurnal convective activity and 
comparable to the Ocean point observation 
(where MIRAI ship was stationed) about 55km 
away from the coastal station Bengkulu. This 
result strongly suggests the high temporal 
frequency of SST update can help the model to 
capture the diurnal variability of convection over 
the Maritime Continent. Therefore using 3-
hourly input SSTs can improve the diurnal 
variability of precipitation over the Maritime 
continent. 

 
Figure 6.2: Domain averaged input SST profiles from ERA5 driving model (~30km) at 3hr frequency and output SST profiles 
from SINGV-RCM (~8 km) at 1hr frequency for 3 consecutive days are shown here. Units in degree C. 



6.3.2 Changes to the land—surface 
representation 
 
We modified the IGBP land use data 
(vegetation) to CCI land use data (vegetation 
fraction) (Figure 6.3a, b).  

We also modified the Land Use and Land cover 
Change (LULC) non-vegetation fraction ancillary 
along with vegetation fraction ancillary to the 
latest European Space Agency (ESA) based 
Climate change Initiative (CCI) data, it is a global 

LULC climatology data computed at 300m grid 
resolution from 1992 to 2020, compared to the 
previously used data of International Geosphere 
Biosphere Program created (IGBP) LULC data 
a coarse-grid resolution of 1km. More realistic 
Urban Land fraction for Kuala Lumpur and 
Singapore is evident from the CCI data as 
shown in Figure 6.4 (a, d) compared to IGBP 
data Figure 6.4 (b, e) and are compared with 
satellite images for Kuala Lumpur figure 6.4 (c) 
and Singapore figure 6.4 (f). 

 

 
Figure 6.3: Broad Leaf fraction comparison. a) CCI data, b) IGBP data. Units in fractions. 
 

 
Figure 6.4: Urban Land fraction comparison. a) CCI data for Kuala Lumpur, b) IGBP data for Kuala Lumpur, c) Satellite 
image for Kuala Lumpur, d) CCI data for Singapore, e) IGBP data for Singapore, f) Satellite image for Singapore. Units in 
fractions. 

 



CCI data corrects the land use and land cover 
fraction in IGBP, as it is the latest improved 
version of land use and land cover fraction data 
available on a continental scale. We notice less 
broad leaf fraction in the CCI data over our 
region compared to IGBP; IGBP shows more 
vegetation fraction over Indonesia and less over 
Malaysia, while CCI is vice versa Figure 6.3 (a, 
b). But in the urban tile, CCI data has captured 
the urban extent of Kuala Lumpur much better 
than the IGBP data compared to satellite map as 
shown in Figure 6.4 (a, b, c) and the urban 
extent of Singapore and Johor Bahru much 
better than the IGBP data compared to satellite 
map as shown in Figure 6.4 (d, e, f). Overall, the 
CCI data is a more improved data compared to 
IGBP. Considerable differences are noted in the 
representation of vegetation fraction as well as 
in the urban tile in these two datasets, CCI-data 
has shown improved representation of urban 
extent. 

We studied the impact of vegetation + non 
vegetation fraction ancillary changes in the 

model simulations and noted only marginal 
improvements in the model precipitation 
simulation (Figure 6.6a) due to the length of the 
simulation being a short run (one month long); 
while a long-term simulation for over 30-year 
period might have a significant change from 
modifying the IGBP land use data (vegetation + 
non vegetation fraction) to CCI land use data 
(vegetation + non vegetation fraction) (Figure 
6.3a, b, Figure 6.4a, b and Figure 6.4d, e ).  

The orography of the 2km model clearly brings 
out the finer details of the orographic height 
compared to the 8km smoothed orography over 
the region as shown in Figure 6.5 (a, b).  
Precipitation is less intense with smoothed 
orography; the impact of high-resolution 
orography is visible in the vicinity of areas with 
high orography (Figure 6.6b). Rainfall intensity 
is increased in the run with better resolved 
orography (Figure 6.6b) which is in accord with 
the earlier findings (Sethunadh et al. 2019). 

 
Figure 6.5: Coarse grid resolution (8 km) vs. fine grid resolution (2 km) orography. Units in m. 

 
The orography over the Singapore domain (SG) 
tested with an 8km smoothed orography and a 
fine grid resolution of 2km orography and found 
only marginal improvements in the model 
precipitation simulation over the Indonesian and 
Malaysian regions due to the length of the 
simulation being only one month long (Figure 
6.6 b). Previous studies have also noted the 
importance of the interaction between 
landmasses, low-level flow, with orography, to 
capture the diurnal cycle and the development 
of heavy rainfall events over peninsular 
Malaysia and Sumatra Island (Nor et al. 2020). 

Tan et al. (2020) explored the role of topography 
on a Madden–Julian Oscillation (MJO) event in 

the Maritime Continent (MC) using a regional 
model and found that low-resolution simulations 
with its inadequate representation of topography 
combined with the deficiency from cumulus 
parameterisation have difficulty in simulating 
MJO across the MC and suggested that the 
improvement in the simulated MJO in the high 
horizontal-resolution compared to the low 
horizontal-resolution model may come, not only 
from the absence of cumulus parameterisation, 
but also from the better representation of 
topography in higher resolution simulation. 
 

6.3.3 Updating Model forcing fields (ERA5 
vs ERA-I) 



We also looked at the SINGV-RCM precipitation 
biases (Figure 6.6c), if any systematic difference 
in precipitation bias arise in the ERA5 newer 
reanalysis (~30km) driving fields versus the 
older version of reanalysis ERA-Interim (~75km) 

driving fields, no systematic differences are 
evident as we can only observe noisy pattern 
emerge from the differences between ERA5 and 
ERAI forced runs (Fig. 6.6c). 

 

 
Figure 6.6: (a) Impact on Precipitation difference (CCI – IGBP ancillaries), (b) Impact on Precipitation difference (2 km 
Orography – smoothed 8 km orography), (c) Impact on Precipitation difference (ERA5 – ERA-Int.) Units in mm/hr. 

 

6.3.4 Changes to the vertical resolution of 
the forcing field data 

Most of the CMIP6 model data are coarsely 
resolved in the vertical as compared to SINGV-
RCM that uses 80 levels up to z = 38.5 km. 
Vertical interpolation of driving data to higher 
resolution are known to produce model biases. 
To get an understanding of expected model bias 
in the future climate projections due to the loss 
of vertical resolution in the driving data, we 
compared the simulations driven using ERA5 
data with full (137) vertical levels and the 
simulation with only 37 levels in the vertical 
against the ERA5 reanalysis. Focus is given to 
the vertical velocities considering its role driving 
convection in the region. From the test results, 

very small differences on large domain (MC) 
were noted (Figure 6.7a), but more sizeable in 
the small domain (SG) is evident (Figure 6.7b) 
between the runs. We also noted that the ERA5 
vertical velocities (omega) are much stronger 
compared to the downscaled ones, this is largely 
due to reduced convection in SINGV-RCM 
(Figure 6.7 a, b). The lower boundary condition 
in ERA5 (i.e. SSTs) also showed colder SST 
bias with respect to O-I SST (figure not shown) 
adjacent to the Singapore and Malaysian 
archipelago compared to the entire Maritime 
continent domain. Also, studies done by Yang et 
al (2021) have shown that ERA5 SST product 
has a colder bias over the maritime continent 
when compared to the ensemble median of SST 
products for the period of 1982–2002. 

 

 
Figure 6.7: Impact of vertical levels in the forcing fields (ERA5-Reanalysis: ~30km, SINGV-RCM: 9 km). SINGV-RCM forced 
with ERA5-137 levels; vs ERA5-37 levels. a) MC domain b) SG domain. Units in Pa/Sec. 



Though the ratio of MC land points to total grids 
points is 18% compared to the ratio of SG land 
points to the total grids at 27% (Slightly higher 
compared to MC domain), one of the reasons for 
less convection in the SINGV-RCM over the SG 
domain may be attributed to the colder SSTs 
seen around the SG domain in the ERA5 driving 
model, as evidenced by dry precipitation bias 
prevailing over the SG domain (look at Figure 
6.10 a-d and 6.11. a-d, precipitation biases for 
different grid resolutions) in SINGV-RCM. 

6.3.5 Sensitivity to Model grid resolutions 

We tested the SINGV-RCM with different model 
grid resolutions and domain sizes with the MC 
domain having grid resolutions like only 9km, 
8km, 4.5km and the SG-domain having 
additional grid resolutions like 2 km, 1.5km 
respectively. Figure 8 shows the area averaged 
diurnal precipitation cycle over the common and 
overlapping grid resolutions for MC and SG 
domains area bound by the dashed and dotted 
boxes shown in Figure 6.1. 

 

 
Figure 6.8: Diurnal cycle of Precipitation area averaged over MC and SG domains. The MC-domain (9 km, 8 km, 4.5 km) 
and the SG-domain (9 km, 8 km, 4.5 km, 2 km, 1.5 km). Units in mm/hr. 

 
We notice from the Figure 6.8a that SINGV-
RCM with explicit representation of convection 
is able to capture the diurnal cycle of 
precipitation close to observation (IMERG). 
While the ERA5 driving model and 9km 
parameterised runs show earlier diurnal peak 
than the observed. The results are quite similar 
for SG domain as well (Figure 6.8b). 

 
 High grid resolution runs of 2km and 1.5km 
have a better diurnal peak timing as well as 
intensity compared to coarse grid resolution 
simulations of 9km, 8km and 4.5km, this may be 
due to the fact that, it takes longer for the system 
to work up enough energy to lift a larger grid box 
when having to convect on that grid scale.  

 



 
 
Figure 6.9: Mean simulated Circulation (850hPa and 200hPa) and bias w.r.to ERA5 for SINGV-5.0 version for 8 km & 2km 
resolutions. Mean circulation (a. ERA5-850hPa winds, b. ERA5-200hPa winds c. 8km-850hPa winds, d. 8km-200hPa winds, 
g. 2km-850hPa winds, h. 2km-200hPa winds) and bias in the circulation (e. 8km-ERA5 for 850hPa, f.  8km-ERA5 for 200hPa, 
i. 2km-ERA5 for 850hPa, j.  2km-ERA5 for 200hPa). Units in m/s. 

 
From Figure 6.8, we found that the precipitation 
features for different resolutions look quite 
consistent. Meanwhile, we wanted to examine 
how the circulation features (Two upper levels: 
850 hPa and 200 hPa) are simulated after 
downscaling to 8 km from the driving model 
(ERA5) and then from 8 km to 2 km resolution. 
Therefore, we plotted the mean circulation 
feature changes over the MC domain from 8 km 
and 2 km simulation with ERA5. We notice from 
the Figure 6.9 (ERA5, SINGV-RCM and 
differences at 2 different levels: 850hPa and 
200hPa) that SINGV-RCM exhibit negative bias 
in the 850hPa to the East of Malaysian 
peninsula and positive bias over regions close to 
south of Indonesia and Borneo (Figure 6.9e 
[8km] and Figure 6.9i [2km]). While the SINGV-
RCM exhibits positive bias in the 200hPa over 
the entire region covering more than 50% 
western maritime continent (Figure 6.9f [8km] 
and Figure 6.9j [2km]). But nevertheless, the 
large-scale pattern for 850hPa and 200hPa wind 
circulation after downscaling from ERA5 to 8km 
and to 2km looks quite similar to the driving 
model ERA5 (Figure 6.9 a-d and g, h). 
 

6.4 Evaluation of SINGV-RCM 
over Southeast Asia 

The SINGV-RCM model’s ability in simulating 
the climate realistically arises from the model 
itself: e.g., dynamical core or physical 
parameterisations and the skill of the driving 
model in the region through Lateral Boundary 
Condition (LBC) and surface condition (SST). 

Therefore, evaluation of the model simulations 
of SINGV-RCM shall include diurnal cycles of 
rainfall, the Probability Distribution Functions 
(PDFs) of model simulated rainfall with focus on 
extremes, spatial model biases of mean rainfall 
and to evaluate the models’ performance over 
two domains, Maritime Continent (MC) domain 
and Singapore (SG) domain and for different 
grid resolutions. 
 

6.4.1 Mean precipitation 

In terms of the mean precipitation biases, we 
notice dry bias close to Singapore is large in the 
parameterised run (Figure 6.10a) compared to 
the explicit run (Figure 6.10b). For the other 
explicit runs like 4.5km (Figure 6.10c) and 8km 
(Figure 6.10d) over the MC domain, the biases 
are quite similar and the dry bias decreases from 
coarse grid resolution to high grid resolution 
around the Singapore-Malaysia region.  

The mean precipitation averaged over the MC-
domain for GPM-IMERG Precipitation is 0.29 
mm/hr. The Mean, Bias, PCC and RMSE with 
respect to IMERG for each simulation is shown 
at the top of each figure panel (Figure 6.10a-d). 
Generally, the Bias value decreases and pattern 
correlation coefficient (PCC) increases, when 
moving from Parameterisation to Explicit 
convection and to higher grid resolution (9km-
Param. 9km-explicit and 4.5km-explicit) in 
SINGV-RCM (Figure 6.10a-c). The Bias 
becomes slightly positive for the 8km simulation 
over the MC domain with highest PCC over the 
MC domain (Figure 6.10d) 



 
Figure 6.10: Mean simulated Precipitation bias w.r.to GPM-IMERG for SINGV-4.1 version for 9 km (a. Parameterised, b.  
Explicit), c. 4.5 km (Explicit) and for SINGV-5.0 version d. 8 km (Explicit) simulations over the MC-domain downscaled from 
ERA5 driving model. Units in mm/hr. GPM-IMERG Precipitation mean for the domain is 0.29 mm/hr. 

 

 
Figure 6.11: Mean simulated Precipitation bias w.r.to GPM-IMERG for SINGV-5.0 version (a) 8 km, (c) 2 km 
and for SINGV-4.1 version (b) 4.5 km (d) 1.5 km simulations over the SG-domain downscaled from ERA5, 8 
km-Explicit, 9 km-Explicit and 4.5 km-Explicit SINGV-RCM simulations, respectively. Units in mm/hr. GPM-
IMERG Precipitation mean for the domain is 0.385 mm/hr. 



Even the high-grid resolution simulations like 2 
km (Figure 6.11c) and 1.5 km (Figure 6.11d) for 
the smaller domain around Singapore (SG) 
domain downscaled from 8 km (Figure 6.11a)  
and 4.5 km (Figure 6.11b) larger MC domain 
show dry bias close to Singapore (SG) domain. 
The new version SINGV5.0 has less dry bias 
around SG domain compared to the older 
version SINGV4.1, which supports the use of 
newer version of SINGV-RCM for the V3 study. 

The mean precipitation averaged over the SG-
domain for GPM-IMERG Precipitation is 
0.385mm/hr. The Mean, Bias, PCC and RMSE 
with respect to IMERG for each simulation is 
shown at the top of each figure panel (Figure 
6.11a-d). Generally, the Bias value does not 
change much, and pattern correlation coefficient 
(PCC) increases slightly, when moving from 
lower grid resolution to higher grid resolution 
(4.5km-explicit and 1.5km-explicit) in SINGV-
RCM (Figure 6.11b and Figure 6.11d) and also 
for the 8km and 2km simulation over the SG 
domain (Figure 6.11a and Figure 6.11c) 

The biases in simulations using 4.5 km grid 
resolution SINGV4.1 (Figure 6.10c) and 8 km 

SINGV 5.0 (Figure 6.10d) are relatively similar 
compared to that in the parameterised 
simulation (Figure 6.10a) suggesting that mean 
features of the rainfall can be captured relatively 
well even at 8 km grid resolution with explicit 
treatment of convection, which is 
computationally less demanding than the 4.5 km 
resolution, suggesting that there is no major 
detriment to the rainfall simulation when allowing 
explicit treatment of convection even at 8km grid 
resolution. 
 

6.4.2 Diurnal representation of Precipitation 

In this section the area-averaged mean diurnal 
cycle over land-only grid points of area bound by 
MC and SG domains are discussed in detail. We 
notice (see Figure 6.12a) a clear advantage of 
using 8km explicit representation of convection 
over the Maritime continent (MC) domain in 
comparison to ERA5 reanalysis, which uses 
convection parameterisation at 30 km grid 
resolution”. 

 

 
Figure 6.12: Diurnal cycle of Precipitation area averaged over land-only grids for MC and SG domains. Units in mm/hr. 

 

It is noted that that the diurnal peak of 
precipitation in the ERA5 driving model is at 
least couple hours earlier than the observed 
GPM-IMERG over the area averaged over the 
entire land-points of MC domain, though the 
precipitation intensity in the SINGV-RCM is 
higher than the observed, the peak diurnal 
timing is well captured by the model over the MC 

domain. Similarly, from Figure 6.12b, we notice 
that the diurnal precipitation in ERA5 starts 
vigorously at least a couple hours earlier when 
compared GPM-IMERG. Even the rainfall 
intensity in ERA5 is substantially high. In 
SINGV-RCM, on the other hand, both 
precipitation intensity and phase are closer to 
the observation. As expected, this 



correspondence with observation is better 
captured at 2 km grid resolution. 

Figure 6.13 shows the spatial variation in the 
timing of the diurnal rainfall peak over SG 
domain compared to GPM-IMERG data at each 
grid point. Figure 6.13a shows the time of diurnal 
peak for each grid from GPM-IMERG for the 
analysis period, Jan 2001, Figure 6.13b is for the 
ERA5 reanalysis, we can notice that the diurnal 
timing over both land and Ocean grids points 
from the ERA5 reanalysis does not match with 
the observed IMERG. But there is a marginal 
improvement in the SINGV-RCM parameterised 
run at 9km (Figure 6.13c) compared to the 
driving model ERA5 reanalysis. While the 

explicit representation of convection run of 
SINGV-RCM at 9km (Figure 6.13d) is closer to 
the observed GPM-IMERG Peak timing of 
diurnal precipitation (Figure 6.13a). 

We can also notice gradual improvement in the 
diurnal peak precipitation timing as we go from 
coarse-grid resolution to high-grid resolution 
simulations of SINGV-RCM 8km-explicit (Figure 
6.13e), 4.5km-explicit (Figure 6.13f), 2km-
explicit (Figure 6.13g) and 1.5km-explicit (Figure 
6.13h). It is clear from these experiments that 
the explicit representation of convection 
combined with improved grid resolution corrects 
the diurnal cycle of precipitation over the 
Singapore domain.

 

 



 
Figure 6.13: Spatial map of Peak Diurnal timing of Precipitation. a) IMERG, b) ERA5-Reanal., c) 9 km-Parameterised, d) 9 km-Explicit, e) 8 km-Explicit, f) 4.5 km-Explicit, g) 2 
km-Explicit and h) 1.5 km-Explicit. Units in hour (UTC). 



6.4.3 Representation of precipitation 
extremes 

In this section the distribution of 95-percentile 
extremes at each grid point in the SINGV-RCM 
simulations for different model grid resolutions. 

Figure 6.14a shows the 95-percentile extreme 
threshold value at each grid point from the 
observed GPM-IMERG data. Figure 6.14b to 
6.14h show the 95-percentile extreme bias value 
at each grid point with respect to observed GPM-
IMERG data. Figure 6.14b shows the bias for 
ERA5 reanalysis, dry bias is evident at every 
grid point, which means the driving model ERA5 
is not able to get extreme rainfall above the 95 
percentile threshold over the Singapore domain, 

but the SINGV-RCM parameterised run at 9km 
shows some improvement over a fewer grids 
(Figure 6.14c), while the SINGV-RCM 9km-
explicit run shows positive bias over the majority 
of grid-points (Figure 6.14d). The positive bias in 
the 95-percentile extreme rainfall either 
intensifies or reduces from coarse-grid 
resolution to higher-grid resolution thereby 
becoming closer to the observation; SINGV-
RCM 8km-explicit (Figure 6.14e), 4.5km-explicit 
(Figure 6.14f), 2km-explicit (Figure 6.14g) and 
1.5km-explicit (Figure 6.14h), which is an added 
value of downscaling to very-high grid resolution 
over the Singapore domain. We have regridded 
the data to the lower resolution (25km), before 
calculating and differencing the percentiles. 

 

 
Figure 6.14: Extreme Precipitation a) 95-percentile threshold value for GPM-IMERG and rest are precipitation bias w.r.to 
IMERG. b) ERA5-Reanal, c) 9 km-Parameterised, d) 9 km-Explicit, e) 8 km-Explicit, f) 4.5 km-Explicit, g) 2 km-Explicit and 
h) 1.5 km-Explicit. Units in mm/hr. 

 

6.4.4 Frequency Distribution of Precipitation 
in SINGV-RCM  

The frequency distribution of rainfall between 
the GPM-IMERG observation and the SINGV-
RCM simulations over the SG-domain for the 
entire period is shown in Figure 6.15. The results 
reveal that SINGV-RCM parameterised 
convection, though estimates better the light 
rainfall compared to the GPM-IMERG in the 
range of 0–1 mm/hr., but underestimates 
moderate and moderately high rainfalls, in the 
ranges 5-10 and 10–25 mm/hr., respectively. It 
is encouraging to see that the SINGV-RCM is 

close to the GPM-IMERG observation in 
estimating the 5-10 and 10-25 mm/hr ranges in 
all explicit-run grid resolutions. Heavy rainfalls in 
the range of 25-100 mm/hr; model is always 
lower than GPM-IMERG and no precipitation in 
the ranges above 100mm/hr. The explicit 
representation of convection in the model 
configuration simulates moderate rain rates 
better than the light rainfall rates, irrespective of 
model grid resolution and the parameterised 
convection simulation tend to predict better the 
light rainfall rates at the expense of heavy 
rainfall events (under-predicts above 5mm/hr).



 

Figure 6.15: Distribution of rain rate over the grids with the older (SINGV-4.1) as well as newer (SINGV-5.0) version 
of SINGV-RCM with Parameterised vs explicit representation of convection at 9 km and high-grid resolution grids 
at 8 km, 4.5 km, 2 km and 1.5 km. Units in mm/hr. 

 
6.4.5 Parameterised vs explicit 
representation of Convection 

We performed simulations of both explicit and 
parameterised representation of convection at 
9km grid resolution and we found that the 
explicit run is able to capture the peak diurnal 
timing better than the parameterised one in the 
area averaged profile (Figure 6.8 a, b) and in the 
spatial diurnal timing map (Figure 6.13c, d) 
compared to GPM-IMERG (Figure 6.13a). In the 
mean precipitation bias as well, we see the dry 
bias close to Singapore is large in the 
parameterised run (Figure 6.10a) compared to 
the explicit run (Figure 6.10b). For the extreme 
precipitation (95 percentile threshold), the 
parameterised-9km run 95 percentile 
precipitation bias (Figure 6.14c) shows large dry 

bias, while the explicit-9km run for 95 percentile 
precipitation bias (Figure 6.14d) shows reduced 
dry bias near the Singapore domain. We also 
found the parameterised one has too much light 
rain and less moderate and intense rainfall from 
the distribution analysis (Figure 6.15) compared 
to the other explicit grid resolutions. 
 

6.5 Summary 

We have modified the SINGV NWP model to 
SINGV-RCM that is fit for purpose to carry out 
long term climate simulations. In the process we 
tested SINGV-RCM with different grid 
resolutions 9km, 8km, 4.5km for MC domain and 
2km and 1.5km over the SINGV domain and 
found the results are robust for both domains in 



terms of capturing mean and diurnal cycle of 
precipitation with both earlier and newer version 
of SINGV-RCM. Multiple experiments performed 
with SINGV as an RCM proves the suitability of 
SINGV-RCM for the V3 study as SINGV as 
benefitted from the development of different 
SINGV versions developed over the Singapore 
region (Regional Tropical atmosphere version). 

SINGV-RCM at different grid resolutions with 
explicit representation of convection performed 
better than the convection parameterised 
version at 9km grid resolution. We noted the 
biggest step change in performance when 
explicit convection is used even at coarse grid 
resolution. The SINGV-RCM with explicit 
convection has shown better diurnal cycle timing 
and intensity compared to the convection 
parameterised version with respect to GPM-
IMERG precipitation data. This result of daily 
timing of maximum precipitation is better 
captured when the convection is explicit strongly 
suggests that even at a very coarse grid 
resolution of 9km or 8km, the model is already 
“convection-enabling” and is performing better 
without the convection parameterisation (Birch 
et al. 2016) . Furthermore, this result is 
consistent with other studies for Western Africa 
using the UM model with a 4.5km horizontal grid 
resolution (e.g., Berthou et al. 2019) and for the 
Western maritime Continent using the WRF 
model (Argueso et al. 2020). 

We also noted better distribution of rainfall 
intensities (less light rain, more heavy rain). 2 km 
is not statistically different to 8 km-explicit over a 
large domain (little sensitivity to grid resolution). 
To balance between very high computation cost 
and longer/more simulations to capture 
uncertainty range, we may still need 2 km time 
slice simulations over the smaller Singapore 
domain in the future projection simulations for 
specific agency applications. 

Following are some of the key summary points 
from this study: 

1)   As part of development of SINGV-RCM, 
we ingested the SST at a 3-hour cycle to 
represent the Diurnal cycle of SST over the 
region. 

2)   We modified IGBP-LULC to high-grid 
resolution CCI-LULC for ancillary preparation. 

3)    Also, we found improvements in 
precipitation simulation with grid resolution 
increase and a better representation of 
Orography over the region with increased grid 
resolution of the model. 

4)   We also conducted test runs with 
Convection parameterisation adopted from GA7 
physics and explicit experiments at 9km and 
found that the explicit run captured the diurnal 
timing better than the parameterised one, which 
encouraged us to push the explicit 
representation of convection to 8km or 9km grid 
resolution considering the merits of reduced 
computational requirements. 

5)   We also performed high-grid resolution 
simulations of 2km and 1.5km for a smaller 
domain and found to be consistent with the 
larger domain simulations, we could notice 
added value in terms of precipitation simulation 
with respect to GPM-IMERG observations, 
which also finds usefulness in other downstream 
application studies. 

6)   We found the explicit versions of the 
SINGV-RCM simulations are able to capture the 
higher threshold precipitation rates compared to 
lower precipitation range bins as evidenced from 
the precipitation distribution analysis. 

7)   We have clearly shown that the added 
value of downscaling from the driving model 
(ERA-5) to 8km and 2km, will augur best 
possible downscaling setup for simulation with 
CMIP6 models for V3 studies, which goes into 
various climate change applications over the 
Singapore region. 

Key findings from this study are: 

• Explicit convection setting is better than 
parameterised due to the fact that the 
improvement is notable when moving from 
parameterised to explicit convection in the 
timing of the diurnal cycle, which has the 
potential to improve other aspects of the 
simulation through feedbacks on the 
radiative fluxes and circulation (Birch et al 
2016) 

• the gain by switching convection off is more 
than increasing resolution from 8km to 
4.5km  

• simulations at 2 km adds value over 8km.
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7.1 Introduction 

This chapter presents the evaluation of the 8km 
and 2km dynamically downscaled historical 
simulations against observations (both in-situ and 
remotely sensed) and reanalysis (gridded proxy 
for observations) data. Six CMIP6 GCMs have 
been dynamically downscaled to 8 km resolution 
for the historical period (1955-2014), and five out 
of the six 8km downscaled simulations have been 
further downscaled to 2 km resolution for the 
period 1995-2014. For details on the downscaled 
simulations please refer to Chapter 6. 

As a part of the evaluation of the dynamically 
downscaled historical simulations we present the 
assessment of: 

(1) Large-scale consistency between the driving 
GCM and the resulting downscaled simulations - 
as a result of dynamical downscaling, although we 
expect the downscaled simulations to capture the 
finer spatial scale features of rainfall, temperature, 
etc. due to improved representation of coastlines, 
mountains and land-use-land-cover we also 
expect the simulations to have large-scale 
consistency with the driving GCM. 

(2) Regional (Southeast Asia and Western 
Maritime Continent) and local (Singapore) 
climatology (rainfall, temperature, humidity and 
winds) – it is important to know which aspects of 
the regional and local climatology are captured 
well in the downscaled simulations and which 
aspects are not in order to use the future 
projections in a more informed manner both for 
physical climate change assessment and climate 
impacts modeling. 

(3) Key regional climate drivers (northeast 
monsoon surges and ENSO teleconnections) – 

evaluation of the underlying regional climate 
drivers helps us understand the reasons behind 
projected changes in climate variables (rainfall, 
temperature, humidity and winds). 

In addition to the above mentioned aspects of 
evaluation, we have also analyzed and presented 
in this chapter the added value of downscaling 
(reduction in biases as compared to the coarse 
resolution driving GCM). While the key results 
from the evaluation of downscaled simulations 
have been presented in this chapter, more details 
can be found in the Appendix.  
 

7.2 Data and Methodology 

Various observational and reanalysis datasets 
have been used for evaluating the V3 downscaled 
model simulations at 8km and 2km resolutions. 
Even for a single variable we use multiple 
observational and reanalysis datasets to evaluate 
the downscaled simulations to account for 
uncertainties amongst datasets and to make a fair 
comparison. 

We have used both gridded datasets based on in-
situ and remotely sensed data and station 
observations from Singapore to validate the 
downscaled simulations. We utilize the latest 
iteration of the PERSIANN CCS CDR precipitation 
datasets for monthly precipitation analysis, 
benefiting from its superior spatio-temporal 
resolution. In the case of diurnal precipitation 
analysis, we rely on the IMERG dataset due to its 
exceptional temporal resolution. The gridded and 
station datasets used for evaluation have been 
shown in Table 7.1 and briefly described in the 
subsections below.

 
 
 
 
 
 
 
 
 
 
 
 



 

 

Table 7.1: Details of observational and reanalysis data products used for evaluation in this chapter, their climate fields used, 
and reference. The abbreviation pr refers to precipitation; TAS: surface air temperature; PSL: mean sea level pressure; SST: 
sea surface temperature; HUSS: specific humidity 
 

NAME FIELDS (resol./freq.) REFERENCES 
HadCRUT4 TAS (5°x5°, monthly) Morice et al. 2012 

BEST TAS (1°x1°, monthly) Rohde and Hausfather, 2020 

FROGs PR (1°x1°, daily) Roca et al. 2019 

IMERG V06 PR (0.1°x0.1°, 30 mins) Huffman et al., 2019 

TRMM 3B42 PR (0.25°x0.25°, 3 hours) Huffman et al., 2007 

PERSIANN_CDR PR (0.25°x0.25°, sub-daily) Ashouri et al., 2015 

CMORPH_v1 PR (0.25°x0.25°, 3 hours) Xie et al., 2017 

ERA5 reanalysis SST, TAS, HUSS, PSL, 
WINDS (0.25°x0.25°, hourly) 

Hersbach et al. 2020 

MERRA2 reanalysis SST, TAS, HUSS, PSL, 
WINDS (0.5° x 0.625°, daily) 

Gelaro et al. 2017 

JRA55 reanalysis 
  
 

SST, TAS, HUSS, PSL, 
WINDS (0.56°x0.56°, 
 sub-daily, monthly) 

Kobayashi et al. 2015 

 

7.3 Assessment of large-scale 
consistency between GCM and 
RCM 

We assess large-scale consistency between the 
driving model (either ERA5 data or CMIP6 GCMs 
data for the 8 km downscaling, and 8 km data for 
the 2 km downscaling) and the downscaler to 
assess the degree of deviations in the domain 
mean (SEA domain for 8 km, and WMC domain 
for 2 km) fields (precipitation, temperature and 
relative humidity). 

Figure 7.1 shows the annual mean time series of 
precipitation and temperature across Southeast 
Asia in driving CMIP6 GCM models, and the 8 km 
downscaled SINGV RCM simulations during 
historical and SSP5-8.5 scenarios.  When 
compared to the ERA5 during the historical 
period, the downscaled RCM simulations 
overestimate the mean precipitation and 
temperature. The downscaled ACCESS-CM2 
simulations captures the interannual variability of 
the mean precipitation but overestimates the 
magnitude compared to the driving GCM 
(ACCESS-CM2). Whereas the time series of 
mean temperatures in the downscaled 
simulations closely matches with the driving 
model (ACCESS-CM2). The EC-EARTH3, 
downscaled simulations can capture the 
interannual variations of the mean precipitation 
and mean temperatures but overestimates the 

magnitude of precipitation and temperature, 
respectively. The MIROC6 model downscaled 
simulations can capture the interannual variations 
with an over estimation of the mean precipitation 
magnitude. Whereas the mean temperature 
variations and magnitude matches the driving 
model (MIROC6).   

Similar to the MIROC6 and ACCESS-CM2 
models, the downscaled simulations of MPI-
ESM1-2HR and UKEESM1-0-LL models can 
capture interannual variability of mean 
precipitation with a slight overestimation of its 
magnitude. In contrast, the mean temperature 
variations and magnitude in downscaled 
simulation matches with the respective driving 
models. The NorESM2-MM downscaled 
simulations also capture interannual variability in 
the mean precipitation but largely overestimates 
the magnitude of the mean precipitation by about 
30%. The interannual temperature variations of 
downscaled NorESM2-MM model matches with 
the driving model with an overestimation of the 
magnitude.  

The downscaled simulations from SINGV are 
broadly consistent with the driving GCMs. The 8 
km downscaled models' climate may have a 
greater potential for strong convection, which 
would increase the rate of precipitation compared 
to the driving GCM models. Most of the 
downscaled simulations can capture the 
interannual variability of temperature and 
precipitation but show a systematic wet bias.  



 
Figure 7.1: Annual mean time series of precipitation (left column) and near-surface air temperature (right column) from driving 
CMIP6 GCMs (150km; black) and V3 downscaled simulations (8km; red) for historical (1980-2014) and SSP5-8.5 scenario 
(2015-2099) for SEA region. First row shows the ERA5 reanalysis at its original resolution (25km) and from its corresponding 
V3 downscaled simulation (8km). 



Figure 7.2 shows the annual mean time series of 
precipitation and temperature across Western 
Maritime Continent (WMC) from 8 km and 2 km 
downscaled SINGV simulations during historical 
and SSP5-8.5 scenarios. During the historical 
period (1995-2014) using ERA5 data, the 
interannual variations and magnitude of annual 
mean precipitation and temperatures from the 8 
km simulations closely matches with the 2 km 
SINGV simulations. The 2 km downscaled time 
series of temperature and precipitation of 
ACCESS-CM2, MPI-ESM1-2HR and UKESM1-0-
LL models closely aligns (matches the interannual 
variability and magnitude) with the 8 km 
downscaled simulations. The 2 km downscaled 
simulations of NorESM2-MM and EC-EARTH3 

models captures the interannual variability of 
temperature and precipitation similar to that of the 
8 km downscaled simulations but overestimates 
the magnitude of the precipitation slightly higher in 
the NorESM2-MM.  

Overall, the 8 km SINGV downscaled large-scale 
mean climate of different driving GCM models 
matches with the 2 km SINGV downscaled fields 
across the WMC region both in historical and 
SSP8.5 scenarios. We might notice some spatial 
(local) changes between the 2 km and 8 km 
downscaled simulated fields compared to the 
domain averaged quantities due to better 
representation of the topographic features in 2 km 
resolution. 

 



 

 

 

Figure 7.2: Annual mean time series of precipitation (left column) and near-surface air temperature (right column) 
from V3 downscaled simulations (8 km in blue and 2km in red) for historical (1995-2014) and SSP5-8.5 scenario 
(2040-2059 and 2080-2099) for WMC region. In the first row, the ERA5 downscaled simulations are shown at 8km 
and 2km resolutions for precipitation (left) and temperature (right).  



7.4 Evaluation of Regional-scale 
climatology 
 
This section will provide an analysis of mean and 
extreme rainfall and temperature as well as 
relative humidity and surface winds simulated by 
SINGV-RCM. 
 

7.4.1 Mean Rainfall 

Figure 7.3a shows that the region generally 
receives rainfall throughout the domain. Figure 

7.3b and d show that relative to PCCSCDR 
(Sadeghi et al., 2021), SINGV-ERA5 enhances 
precipitation over areas with significant 
topography, such as the Sumatran Mountain 
range, Peninsular Malaysia, Borneo, Sulawesi, 
New Guinea, and Vietnam. Concurrently, there is 
a reduction of rainfall over land areas near these 
regions of high topography, such as east Sumatra 
and west Borneo. Near the east and west 
boundaries, there is an enhancement of rainfall 
over the wetter regions in climatology. 

 

 
Figure 7.3: Annual mean precipitation (shaded) in (a) PCCSCDR, (b) ERA5 downscaled by SINGV (SINGV-ERA5) (c) 
Multimodel mean of downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-ERA5 (i.e. b -a), 
while (e) shows the bias in SINGV-MMM (i.e. c-a). 

 

In DJF, the rainband shifts south of the equator, 
with Java, Borneo and New Guinea receiving 
more rainfall and Indochina being relatively dry 
(Figure 7.4a). Similar to the annual mean, there is 
an enhancement of precipitation over areas with 
significant topography and a reduction of 
precipitation in nearby areas in the downscaled 
simulation (Fig. 7.4b, d). There is also increased 
rainfall at the boundaries. SINGV-MMM shares 
qualitative features with SINGV-ERA5. Relative to 
SINGV-ERA5, SINGV-MMM simulates less 
rainfall west of Thailand and east of the 
Philippines, and increased rainfall over the Java 
sea (Fig. 7.4d, e). A comparison of land rainfall 
simulated by downscaled CORDEX models 
against GPCC by Tangang et al 2020 (see their 
Fig. 5) also shows a similar moistening in high 
topography regions, with drying seen parts of the 

east coast of Peninsular Malaysia and Sumatra 
and western parts of Borneo.   

The rain band moves north of the equator in this 
JJA season, with a notable rainfall peak falling on 
the west coast of Indochina and the Philippines 
(Figure 7.5a). The enhanced rainfall over regions 
with high topography described in the annual 
mean can be seen in JJA as well (Figure 7.5b, d), 
such as over the west coast of Thailand and along 
Borneo, Sulawesi and New Guinea. In SINGV-
MMM (relative to PCCSCDR) (Figure 7.5c, e) 
there is an enhancement of rainfall east of the 
Philippines and around Java, and reduced 
precipitation west of Myanmar. The increased 
rainfall on the west edge of Indochina is seen in 
downscaled CORDEX models relative to GPCC 
(Tangang et al 2020).



 

 

 
Figure 7.4: DJF mean precipitation (shaded) in (a) PCCSCDR, (b) ERA5 downscaled by SINGV (SINGV-ERA5) (c) Multimodel 
mean of downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-ERA5 (i.e. b -a), while (e) 
shows the bias in SINGV-MMM (i.e. c-a). 

 

 
Figure 7.5: JJA mean precipitation (shaded) in (a) PCCSCDR, (b) ERA5 downscaled by SINGV (SINGV-ERA5) (c) Multimodel 
mean of downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-ERA5 (i.e. b -a), while (e) 
shows the bias in SINGV-MMM (i.e. c-a). 

 

 

Annual cycle: 
 
The annual cycle of rainfall over the Southeast 
Asia and Western Maritime Continent regions 
varies on monthly scale due to different large-
scale drivers (ENSO, IOD, MJO), local drivers 
(sumatra squalls, northeast monsoon surges, 
Borneo vortex) and seasonal transition of the 
ITCZ. Here, we use the observational data from 
Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Networks 
(PERISANN), and model data from 2 km and 8 km 
downscaled simulations using ERA5 data. Figure 
7.6 shows the area averaged precipitation annual 
cycle over the Southeast Asia (8 km; blue line) 
and Western Maritime Continent (8 km & 2 km; 
orange line) using SINGV RCM downscaled 
simulations and PERISANN (black line) over land 
& ocean, land only and ocean only regions 
(shading denotes the spread between models). 



 

 

Over the SEA (Land & Ocean), and SEA (Ocean) 
domains, the 8 km simulation is able to capture 
the observed (PERISANN) annual cycle with peak 
precipitation during July. The SEA land 
precipitation annual cycle in 8 km downscaled 

simulation shows peak precipitation in July which 
is not observed in PERSIANN (peak during May). 
Overall, the land only precipitation annual cycle 
over the SEA is not captured well in the 8 km 
downscaled SINGV simulations. 

  

 
Figure 7.6: Annual cycle of precipitation (mm/day) from downscaled simulations for the historical period (1995-2014) for 
Southeast Asia (8km) and WMC (8km and 2km) for land + ocean, land only and ocean only. For observations, multiple datasets 
were used and are shown in black. The climatological period for observations varies as in Table 1. 

 

 
In the WMC (land & Ocean) domain, the 
precipitation annual cycle in observations varied 
with both the 2 km and 8 km downscaled 
simulations during May and June. The 
downscaled simulations overestimates the 
observed precipitation magnitude in the months 
May to November and underestimates it in the 
months of January to April.  In addition, there is a 
large intermodal difference during the southwest 
monsoon season i.e. July to September. 

In the WMC (land only) domain, the annual cycle 
of precipitation is captured reasonably well by 2 
km and 8 km downscaled simulations but 
underestimates the magnitude (greatly by 8 km 
simulation) compared to observations during 
January to April. The precipitation is 
overestimated in 2 km downscaled simulations 
from May to November compared to observations 
and 8 km simulations.  

In WMC (ocean only), the observed annual 
precipitation cycle is not captured well by the 2 km 
and 8 km downscaled simulations during April and 
May. The precipitation from April to November  is 
overestimated in both the 2 km and 8 km 
downscaled simulations. Also, there is a large 
intermodal difference during the southwest 
monsoon season (JJAS). 

Overall, the mean precipitation annual cycle over 
the SEA region (Land & Ocean, Ocean) from 8 km 
and 2 km downscaled simulations is comparable 
to the observed annual cycle (PERISANN) with a 
difference in magnitude. The Land-only 
precipitation annual cycle over SEA is not 
captured well by the downscaled simulations. The 
WMC region’s annual precipitation cycle using the 
8 km and 2 km downscaled simulations (large 
intermodal spread during the southwest monsoon 
season) vary compared to the observed annual 



 

 

cycle over Land & Ocean and Ocean only 
domains. The WMC region’s observed land only 
precipitation annual cycle is captured by 2 km and 
8 km downscaled simulations with a difference in 
magnitude.  

Diurnal Cycle 

The diurnal cycle of rainfall is an important 
component of rainfall variability in the Maritime 
Continent. We use hourly data from observations 
(IMERG) and model data from 8 km and 2 km 

simulations for evaluating the diurnal cycle of 
rainfall. Figure 7.7 shows the area averaged 
diurnal precipitation cycle over the 2 km WMC 
dynamical downscaling domain, for two seasons 
JJAS(a) and NDJF(b). We see from Figure 7.7a 
that SINGV-RCM 8 km and 2 km with explicit 
representation of convection is able to capture the 
diurnal timing of precipitation over land grid points, 
and the timing matches well with observation 
(IMERG) but the magnitude does not, and this is 
worse in the 2km model, for JJAS season.

 

 
Figure 7.7: Diurnal cycle of Precipitation area averaged over WMC domain for JJAS and NDJF.  a) Ensemble median and 
spread for SINGV-2km and SINGV-8km compared to IMERG-obs (JJAS), b) Ensemble median and spread for SINGV-2km and 
SINGV-8km compared to IMERG-obs (NDJF). Units in mm/hr. Note that Singapore is 8 hours ahead of UTC. The precipitation 
peak is around the late afternoon of Singapore local time. 

 

Blue line for 8 km model runs and Orange line for 
2 km (shades denote the spread among the 
models), however the downscaling to 8 km and 2 
km improves the diurnal timing, we do see the 
added value from 8 km to 2 km, though we see 
improvement in the timing compared to GCM 
(which is not shown here), we do see the intensity 
is more in 8 km compared to IMERG and even 
more intense when we drive 2 km by 8 km output 
for JJAS. 

The results are quite similar for NDJF as well 
(Figure 7.7b). High resolution runs of 2 km have a 

better diurnal peak timing (improvement) 
compared to 8 km run, while the intensity (Land 
grid points only) is over predicted by SINGV-RCM 
for JJAS season (Figure 7.7 a). Whereas the 
SINGV-RCM at 8 km resolution is under predicted 
for NDJF season compared to observation (Figure 
7.7 b), while the 2km resolution corrects it 
(improvement). Figure 7.8 shows the spatial 
variation in the timing of the diurnal rainfall peak 
over the WMC domain compared to GPM-IMERG 
data at each grid point.

 



 

 

 
Figure 7.8: Spatial map of Peak Diurnal timing of Precipitation for JJAS and NDJF. a) Ensemble mean of SINGV-8km (JJAS), 
b) SINGV-8km-ERA (JJAS) c) Ensemble mean of SINGV-2km (JJAS), d) SINGV-2km-ERA (JJAS), e) IMERG-obs (JJAS). f) 
Ensemble mean of SINGV-8km (NDJF), g) SINGV-8km-ERA (JJAS), h) Ensemble mean of SINGV-2km (NDJF), i) SINGV-2km-
ERA (JJAS), j) IMERG-obs (NDJF). Units in hour (SGT). 

 

The spatial variation in timing of the peak rainfall 
for this region: earlier times over land seem largely 
tied to the higher orography while over much of 
the lower orography the peak occurs 
overnight/early morning (Based on Singapore 
local time), hence the second peak in Fig. 7.7b. 
There is also a later peak along the Sumatran 
coast and an earlier peak over and beyond the 
islands off the coast. The models do seem to 
capture this spatial variation. 

7.4.2 Rainfall Extremes 

Here we used the annual maximum 1-day 
precipitation (RX1day) to evaluate RCM’s fidelity 
simulating the rainfall extremes. Based on the 
evaluation (Figure 7.9), it is observed that both 
SINGV-ERA5 and SINGV-MMM models tend to 
overestimate RX1day across the Southeast Asia 
(SEA) domain. This overestimation is consistent 
with the overestimation of the annual mean rainfall 
in these models. 

 

 
Figure 7.9: Annual RX1day in (a) PCCSCDR, (b) ERA5 downscaled by SINGV (SINGV-ERA5) (c) Multimodel mean of 
downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-ERA5 (i.e. b -a), while (e) shows the 
bias in SINGV-MMM (i.e. c-a). 

 



It suggests that there might be a common bias in 
the representation of precipitation processes in 
these models, leading to an overestimation of both 
mean rainfall and extreme precipitation events. 
Specifically, the overestimation of RX1day is more 
prominent in the equatorial SEA region, while the 
biases in the extratropical region are relatively 
smaller. This spatial pattern of biases suggests 
that there may be certain factors or processes 
specific to the equatorial region that contribute to 
the overestimation of extreme rainfall events. 
These results can help identify areas where 
improvements are needed in the representation of 
precipitation processes in the RCMs, particularly 
in capturing the characteristics of extreme rainfall 
events in the equatorial SEA region. 
 

7.4.3 Mean Temperature 

Figure 7.10 shows the annual cycle of mean 
temperature over the SEA and WMC regions from 
HadCRUT observations (black line), 8 km (blue 
line), and 2 km (orange line) downscaled 
simulations for the historical period. The annual 

cycle of temperature in the SEA and WMC regions 
vary across months over land & ocean, land only, 
and ocean-only domains.  

Over the SEA (Land & Ocean) domain, the annual 
cycle has a bimodal distribution with peak 
temperatures in May and October. The 8 km 
downscaled simulations are able to capture the 
observed annual cycle with a slight 
underestimation of temperatures during Jan-Apr, 
and Sep-Dec.  

Over the SEA (land only) domain, the observed 
annual cycle has bimodal distribution with peak 
temperatures during May and October. The 8 km 
downscaled simulations can capture one of the 
peaks during May but cannot capture the other 
one. The temperatures are significantly 
underestimated by about 2oC over SEA land in 
the downscaled simulations. The cold biases are 
observed in 8km-downscaled simulations similar 
to the cold biases in the GCMs over the Indochina 
region (section 5.3.1 Figure 5.2). Over SEA 
(ocean only), the observed annual cycle of 
temperature is captured well by the 8 km 
downscaled simulations. 

 

 
Figure 7.10: Annual cycle of temperature (deg C) from downscaled simulations for the historical period (1995-2014) for 
Southeast Asia (8km) and WMC (2km) for land+ocean, land only, and ocean only. For observations, HadCRUT is used for 1995-
2014. 

 



The observed mean annual cycle of temperature 
over the WMC region (Land & Ocean) has 
bimodal distribution with peak temperatures 
during May and October. The 8 km and 2 km 
downscaled simulations are able to capture the 
annual cycle but slightly overestimate the 
magnitude. 

Over the WMC (Land only) domain, both the 8 km 
and 2 km simulations are able to capture the 
observed annual cycle with a slight 
underestimation of the magnitude. The WMC 
(ocean only) observed temperatures show 
bimodal distribution with peaks during May and 
October. Both the 8 km and 2 km downscaled 
simulations are able to capture the annual cycle 
but slightly overestimate the magnitude. 

The historical annual temperature cycle over the 
SEA and WMC regions is captured reasonably 
well by 2 km and 8 km downscaled simulations. 
The 8 km downscaled simulations significantly 

underestimate the temperatures over the SEA 
(Land only) domain. 
 

7.4.4 Temperature Extremes 

The extreme temperatures are measured using 
the annual (or monthly) maximum of daily 
maximum surface temperatures (TXx). Figure 
7.11 shows the TXx over the SEA land regions in 
ERA5 land (a), ERA5 downscaled SINGV (b), and 
Multimodel mean of the downscaled GCM 
simulations (c). As seen in the Fig. 7.11(d, e), both 
the ERA5 downscaled simulations and multimodel 
mean of downscaled simulations overestimate the 
TXx temperatures across most of the SEA nations 
(underestimate over New Guinea) with a higher 
magnitude of differences in GCM downscaled 
simulations (7.11d). Overall, the SINGV 
downscaled model simulations can capture the 
spatial pattern of historical extreme temperatures 
over the SEA nations with a difference in the 
magnitude of temperatures.  

 
Figure 7.11: Annual TXx in (a) ERA5 Land (b) ERA5 downscaled by SINGV (SINGV-ERA5) (c) Multimodel mean of downscaled 
GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-ERA5 (i.e. b -a), while (e) shows the bias in SINGV-
MMM (i.e. c-a). 

 

7.4.5 Relative Humidity 

Humidity is a measure of the water vapor 
concentration in air. Relative humidity is 
expressed as a percentage, which measures the 
amount of water vapor in the air relative to the 
maximum amount the air can hold at a given 
temperature and pressure. Figure 7.12 shows the 
annual cycle of Relative humidity (RH) across the 
SEA and WMC regions from observations 

(ERA5), and downscaled simulations (2 km and 8 
km) during the historical period.  

Over the SEA (Land & ocean) domain, the 8 km 
downscaled simulations of different driving GCM 
models can capture the observed annual 
variations of RH (maximum values during the 
southwest monsoon season) but underestimate 
RH magnitude. The SEA (land only), the 8 km 
downscaled simulations can capture the observed 



 

 

annual cycle but significantly underestimate RH 
magnitude by about 4% compared to ERA5. The 
SEA (ocean only), 8 km downscaled annual cycle 

matches the observed annual cycle with an 
underestimation of the magnitude.  

 

 
Figure 7.12: Annual cycle of relative humidity from downscaled simulations for the historical period  (1995-2014) for Southeast 
Asia (8km) and WMC (8km + 2km) for land+ocean, land only, and ocean only. For observations, ERA5 data is used for 1995-
2014. 

 

Over the WMC (Land & Ocean), the 2 km 
downscaled model simulations match better with 
the RH in ERA5 compared to the 8 km 
downscaled simulations. For the historical RH 
annual cycle, the 2 km downscaled simulations 
also capture it but slightly underestimate during 
January to April and overestimate during April to 
November. 

The WMC (Land only) 8 km and 2 km downscaled 
simulations can capture the historical RH annual 
cycle. The 8 km downscaled simulations 
significantly underestimate the magnitude and 2 
km simulations slightly overestimate. The WMC 
(Ocean only) downscaled simulations (2 km and 8 
km) can capture the annual cycle but slightly 
underestimate compared to the ERA5. Overall, 
the annual cycle of RH is captured in 2 km and 8 
km downscaled SINGV simulations but 
underestimate the RH magnitude (largely by 8 km 
downscaled simulations).  
 

7.4.6 Winds 

Ali et al (2022) evaluated five CORDEX-SEA 
simulations of downscaled wind speed and 
concluded that all models were able to reproduce 
the spatial pattern of wind speed well, but only 
described three models as being able to correctly 
reproduce the wind direction. In a comparison of a 
14-member ensemble simulation, Tangang et al 
(2020) noted that the patterns of bias in the RCM 
were generally similar to those of the parent GCM, 
although the RCM could make modification in 
some cases, such as strong southerlies in the 
eastern Indian Ocean and west of Sumatra. Their 
results also indicate a general strengthening of the 
bias in the downscaled simulations of the 
westerlies over Indochina in JJA. As for DJF, the 
largest biases in the multi-model mean were 
easterly over Indochina and westerly over much 
of Java. 

In JJA (Figure 7.13), the southwesterly flow is 
strongest over the Indian ocean. Downscaling in 
SINGV-ERA5 enhances the westerly flow from the 
Andaman Sea to the Philippines relative to ERA5. 



 

 

This strengthening of the monsoonal flow is 
enhanced for SINGV-MMM, similar to the 
multimodel mean JJA results of Tangang et al 
(2020) and the westerly bias of the 6 CMIP6 
models over part of Indochina (Figure 7A.1). In 
contrast, the southwesterly flow for SINGV-
NorESM2-MM is displaced southwards towards 
Sumatra, while that of MIROC6 is weaker than 
ERA5 (not shown). Martin et al. (2021) have noted 

a similar westerly bias over Indochina in the GC2 
configuration of the Unified Model (UM), on which 
SINGV-RCM is based. Their result, combined with 
the occurrence of this bias even when forced with 
ERA5 at the boundaries (panel d), suggests that 
the bias is inherent in the UM. In addition, because 
SINGV-RCM is run with explicit convection, the 
development of this bias is not solely linked to the 
convection scheme employed by the UM. 

 
Figure 7.13: Mean JJA 850 hPa winds (quivers) and wind speed (shaded) in (a) ERA5, (b) ERA5 downscaled by SINGV (SINGV-
ERA5) (c) Multimodel mean of downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-ERA5 
(i.e. b -a), while (e) shows the bias in SINGV-MMM (i.e. c-a). 
 

In DJF (Figure 7.14), the northeasterly flow 
reaches a peak in wind speed off the south coast 
of Vietnam, and turns southeasterly after crossing 
the equator. Downscaling in SINGV-ERA5 
creates a cyclonic anomaly centered on south 
Vietnam, as well as enhancing the westerlies off 
the east coast of Borneo towards the Celebes 
Sea. Except for SINGV-ACCESS-CM2 (not 
shown), this feature is not particularly apparent in 
the downscaled GCMs and SINGV-MMM. 
Instead, the flow in SINGV-MMM is more northerly 

over the South China Sea along the east coast of 
the Malay Peninsula and towards Singapore.  The 
downscaled simulations show small or 
northeasterly bias over Indochina, and a spread of 
wind bias over Java (not shown), which differ from 
the CMIP5 CORDEX-SEA downscaling findings 
of Tangang et al (2020) described above. A 
northeasterly bias in parts of Indochina can be 
seen in the multimodel mean of the 6 GCMs used 
for downscaling (Figure 7A.2). 

 



 

 

 
Figure 7.14: Mean DJF 850 hPa winds (quivers) and wind speed (shaded) in (a) ERA5, (b) ERA5 downscaled by SINGV 
(SINGV-ERA5) (c) Multimodel mean of downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-
ERA5 (i.e. b -a), while (e) shows the bias in SINGV-MMM (i.e. c-a). 
 

 

7.5 Evaluation of regional climate 
drivers 

The biases in the simulation of climate variables 
are associated with simulation biases of the key 
climate drivers. In this subchapter we show the 
biases in the simulation of three important climate 
drivers - northeast monsoon surges, ENSO 
teleconnections, and weather regimes.  
 

7.5.1 Monsoon 

Monsoons have a key role in shaping the weather 
and climate of the MC domain. The MC domain is 
affected by the boreal summer (JJA) monsoon as 

well as the boreal winter (DJF) monsoon. 
Seasonal migration of ITCZ leads to climatological 
rainfall peaks during the monsoon season in 
Northern and Southern hemispheres.  

Figure 7.15 (top left panel) shows the observed 
(based on PERSIANN-CCS data) migration of 
monsoon rainfall for the 1995-2014 period with 
northern hemisphere (NH) peaks during JJAS and 
southern hemisphere (SH) peaks in DJFM. Note 
the more persistent wet all year around in the 
equatorial region. Also, there is north-south 
asymmetry across the equator, with the NH 
monsoon extends further north compared to the 
SH monsoon extension southward.  

 

 



 

 

 
Figure 7.15: The time-latitudinal progression of zonally-averaged (80-160E) climatological monthly precipitation (i.e. passage 
of the ITCZ-monsoon rain belt) for the period 1995-2014 in high-resolution satellite observations (PERSIANN-CCS; regridded 
to 8-km) and in SINGV-RCM 8-km downscaled simulations of ERA5 and the six sub-selected GCMs (ACCESS-CM2, EC-Earth3, 
MIROC6, MPI-ESM1-2-HR, NorESM2-MM and UKESM1-0-LL). The multi-model ensemble mean (ENSMEAN) of the six 
downscaled GCMs is shown in the top right panel. Biases in the SINGV-ERA5 and ENSMEAN progression of the ITCZ rain belt 
are shown in the second row. 

 

Compared to the observation reference, SINGV-
ERA5 (Figure 7.15 middle panel in the 1st and 2nd 
rows) shows that overestimated rainfall in the NH 
(~15N) during the summer monsoon season 
(JJAS) and also overestimated rainfall in the SH 

(~8S) during the winter monsoon season. 
Multimodel mean of SINGV-RCM (SINGV-MMM) 
shows similar biases of overestimated monsoon 
rainfall as the SINGV-ERA5. Within the equatorial 
region, SINGV-RCMs tend to show a larger bias 



 

 

compared to the SINGV-ERA5. Six RCMs overall 
show reasonably realistic monsoon rainfall across 
the year, but we do observe model diversity 
(Figure 7.15 lower panels), e.g., EC-Earth3 
appears to have a much stronger summer 
monsoon rainfall while MIROC6 has weaker 
summer rainfall compared to other models. 

Similar to significant positive bias of precipitation 
in a latitude band of 10-20N observed in GCM-
MMM (Fig.5.14), the downscaled simulations of 
SINGV-RCM (8km) also show significant positive 
precipitation bias around the similar latitudinal 
band (Fig. 7.15) 
 

7.5.2 Northeast Monsoon surge 

Figure 7.16 shows the spatial pattern of mean 
rainfall and 850hPa winds composited over surge 
days (as defined in Chapter 7) for the period 1995-
2014 from observations/reanalysis and 
downscaled 8 km simulations. Also shown are the 
corresponding biases. The reference (Fig. 7.16a) 
shows northeasterly winds over the South China 
Sea characteristic of surge days. After crossing 
the equator, the winds turn northwesterly. In the 
process, these winds bring heavy rainfall to the 
Maritime Continent, especially over the 
Philippines and Borneo. 

Figures 7.16b and d show that SINGV-ERA5 is 
able to capture the wind features, with increased 
precipitation over the Java Sea, Sulawesi, and 
New Guinea, as well as the Indian ocean, and an 
eastward shift of the precipitation peak over 
Borneo. There are anomalous winds directed 
eastward from Borneo, as well as anticyclonic 
winds around Myanmar. 

In SINGV-MMM (Figures. 7.16c and e; computed 
from the multi-model mean of the 6 downscaled 8 
km simulations), there is a southward shift of 
precipitation, with strong precipitation over the 
Indian ocean and east of Borneo.  Similar to GCM 
bias (Fig. 5.24c) we observe dry bias over 
Philippines and wet bias over Sulawesi in the 
downscaled SINGV-MMM (Fig.7.16e). 

The surge frequency of the reference (not shown) 
is 19% which matches that of SINGV-ERA5 
(19%). Other than MIROC6 (12%), the 
downscaled models have surge frequencies 
ranging from 15% in ACCESS-CM2 to 20% in 
UKESM1-0-LL, with a multi-model mean of 17%. 
This is consistent with the driving GCMs, where 
GCMs generally had lower surge frequencies as 
compared to reanalysis. 

 

 
Figure 7.16: Mean 850 hPa winds (quivers) and rainfall (shaded) composited over surge-days in (a) REF (surge days and surge 
winds derived with ERA5 winds and sea level pressure, and using PERSIANN-CCS-CDR rainfall), (b) ERA5 downscaled by 
SINGV (SINGV-ERA5) (c) Multimodel mean of downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in 
SINGV-ERA5 (i.e. b -a), while (e) shows the bias in SINGV-MMM (i.e. c-a). The reference and model datasets have different 
resolutions, so we use the lower of the two resolutions. For surge days and wind composites, this is 25km following the resolution 
of ERA5. For rainfall, values are computed at 8km resolution (following that of SINGV-RCM). 
 



7.5.3 ENSO Teleconnections 
 
Evaluation of the simulation of ENSO-rainfall 
teleconnection is proposed as one of the metrics 
to test the fidelity of RCMs (Torres-Alavez et al. 
2021). The main goals of this evaluation are to 
assess: 1. whether RCMs and driving GCMs 
reproduce the observed large scale ENSO 
teleconnection patterns; 2. whether the ENSO 
signal propagates correctly from the driving GCMs 
to the RCMs; 3. whether the higher resolution of 
RCMs can improve the ENSO teleconnection in 
certain parts of the domain.  

Here we analyze ENSO teleconnection over the 
Maritime Continent in the historical period (1995-
2014) in all seasons. The observation reference is 
calculated using 8 km resolution PERSIANN-
CCS-CDR monthly rainfall and HadISST Nino3.4 
index. For the JJA season, the observed 
teleconnection shows negative rainfall variability 
induced by El Nino near the central/western MC 
while positive rainfall variability near the western 
Pacific and Northern MC (Figure 7.17a). We 
calculate ENSO-rainfall teleconnection in the 
RCM using RCM rainfall and Nino3.4 index from 
the corresponding driving GCM. The comparison 
shows that RCMs are able to reproduce 
consistent spatial patterns as the corresponding 
driving GCMs (Figure 7.17). 

We further calculate two measures to compare 
teleconnection in RCMs and GCMs to the 
observation: 1. RMSE between spatial patterns of 
the teleconnection, 2. Correlation coefficient 
(corrcoeff) between spatial patterns. The results 
show that RCMs have similar RMSE as their 
corresponding driving GCMs (Figure 7.18).  

RCMs have slightly lower spatial agreement with 
the observation compared to the driving GCMs 
(Figure 7.19). Across the season, RCMs have 
lower RMSE but similar corrcoeff to GCMs in MJJ 
and higher RMSE, lower corrcoeff for most of the 
rest of the year. The corrcoeff in RCMs is 
generally lower in April-July than in the other 
months. Note that it is difficult to identify the 
origins of detailed differences between GCMs and 
RCMs given multiple possible causes, such as 
spatial resolution, different physics schemes, etc. 

 
 
Figure 7.17: JJA ENSO-rainfall teleconnection  over the 
Maritime Continent using correlation [corr (N34, pr)]. a. 8km 
resolution observation using TS_HadISST and  
PR_PCCSCDR. b-g. 8km resolution RCMs. h-m. GCMs 
remapped to 8km to facilitate the visual inspection. 
 

 

 



 

 

 
Figure 7.18: RMSE between the 8km observation and RCMs (a) or GCMs (b) over the MC region as to the ENSO teleconnection 
in the JJA season of the historical period (1995-2014). 

 

 
Figure 7.19: Correlation coefficient between the 8km observation and RCMs (a) or GCMs (b) over the MC region as to the 
ENSO teleconnection in the JJA season of the historical period (1995-2014). 

 

7.6 Evaluation of local-scale 
climatology over Singapore 
 
Assessment of regional scale climatology was 
presented in subchapter 7.4 above, which looked 
at the evaluation of key climate variables over the 
Maritime Continent in the 8 km downscaled 
simulations. In this subchapter we focus on the 
evaluation of 2 km downscaled simulations over 
Singapore. We have also carried out evaluation of 
the 8 km simulations over Singapore, but since the 
2 km simulations are the primary dataset for the 
climate change projections over Singapore 

presented in Chapter 10, we present the 
evaluation of the 2 km historical simulations in this 
chapter. 
 

7.6.1 Mean Rainfall 

The annual mean spatial pattern of precipitation 
over Singapore is shown in Figure 7.20. The mean 
precipitation values range from 0-10mm/day. The 
kriged precipitation over the Singapore land grids 
uses 28 observational stations with continuous 
data availability during the analysis period (1995-
2014) Figure 7.20a. Please see Chapter 9 Section 
9.7.1 for more information on the kriged rainfall.  



 

 

The SINGV-RCM simulations at 2 km resolution 
forced by SINGV-RCM 8 km obtained from forcing 
ERA5 reanalysis is shown in Figure 7.20b and the 
multi-model annual pattern of mean precipitation 
simulated using 5 GCMs is shown in Figure 7.20c. 
The bias in the simulated annual mean 
precipitation with respect to station kriged 
precipitation are shown in Figure 7.20d, and e for 
downscaled data using ERA5 and multi-model 
mean, respectively. 

The overall pattern of precipitation over the 
Singapore land grid points are well captured in the 
2km model downscaled using ERA5 and multi-
model mean with respect to the kriged 
precipitation mean. 

The annual mean precipitation bias for ERA5 
downscaled simulation (Figure 7.20d) shows dry 
bias over the central land grids and exhibits dry 
biases over the coastal grids of Singapore. This 
may be due to the fact that the model sees those 
grids as Ocean grid points. Also there is a slight 
overestimation of precipitation over the 
northernmost land grid points. MMM downscaled 
simulations (Figure 7.20e) shows similar low bias 
over the central land grids and exhibit dry biases 
over the coastal grids of Singapore, and we don't 
find the overestimation of precipitation over the 
northernmost land grid points. 

 
Figure 7.20: Annual mean precipitation in (a) Kriging gridded dataset, (b) ERA5 downscaled by SINGV (SINGV-ERA5) (c) 
Multimodel mean of downscaled GCM simulations with SINGV (SINGV-MMM). (d) shows the bias in SINGV-ERA5 (i.e. b -a), 
while (e) shows the bias in SINGV-MMM (i.e. c-a). 

 

7.6.2 Rainfall Extremes 

Extreme precipitation events are defined as the 
annual maximum daily maximum precipitation 
(Rx1day). The Annual RX1day spatial pattern of 
precipitation over Singapore is shown in Figure 
7.21. The Annual RX1day in kriged precipitation 
ranges from 80 to 180 mm. There is a clear east-
west contrast with east being wet and west being 
dry in the station observations Figure 7.21a.  

The Annual RX1day of SINGV-RCM simulations 
at 2 km resolution from ERA5 is shown in figure 
7.21b and the multi-model annual pattern of mean 
precipitation simulated using 5 GCMs is shown in 
Figure 7.21c. 

 

The bias in the simulated Annual RX1day 
precipitation with respect to station kriged 
precipitation are shown in Figures 7.21d and 
7.21e for downscaled using ERA5 and multi-
model mean respectively. The Annual RX1day 
precipitation by 2km model downscaled using 
ERA5 shows upwards of 80mm in the grids over 
North-west of Singapore, while the 2km model 
downscaled using multi-model mean shows wet 
bias upwards of 80mm in grids over central-west 
land points of Singapore with respect to the kriged 
Annual RX1day precipitation. 



 

 
Figure 7.21: Annual RX1day in (a) kriged gridded dataset, (b) ERA5 downscaled by SINGV-RCM (SINGV-ERA5), (c) multimodel 
mean of downscaled GCM simulations with SINGV-RCM (SINGV-MMM). (d) Shows the bias in SINGV-ERA5 (i.e. b -a), while 
(e) shows the bias in SINGV-MMM (i.e. c-a). 

 

7.6.3 Mean Temperature 

The Annual spatial pattern of mean temperature 
over Singapore is shown in Figure 7.22. The mean 
annual temperature values range from 27-29 deg. 
Celsius. 

The SINGV-RCM simulation of annual pattern of 
mean temperature at 2 km resolution forced by 
ERA5 reanalysis is shown in Figure 7.22a and the 
multi-model downscaled annual pattern of 
temperature simulated using 5 GCMs is shown in 
Figure 7.22b.  

The overall pattern of annual Mean Temperatures 
over the Singapore land grid points are well 
captured in the 2km model downscaled using 
ERA5 and multi-model mean, with warm 
temperatures over the Central Business District 
(CBD) regions and cooler temperature over the 
less urbanized areas of North-West and Central 
regions. 

Large warm biases are confined only over the 
coastal grid points and most grid points in the 
urbanized area are within the range of 0.1-0.3 
deg. Celsius as shown in Figure 7.22c.   

7.6.4 Temperature Extremes 

Extreme Temperature events are defined as the 
highest maximum temperature (TXx) of the 
monthly maximum value of daily maximum 
temperature (TX). The Annual TXx spatial pattern 
of Temperature over Singapore is shown in Figure 
7.23. The Annual TXx ranges from 30 to 38 deg. 
Celsius. The warmer temperature grids of above 
36 deg. Celsius covers about 70-80% of 
Singapore land grid points in the ERA5 
downscaled data as shown in Figure 7.23a.  

The Annual TXx of SINGV-RCM simulations at 2 
km resolution from ERA5 is shown in Figure 7.23a 
and the multi-model Annual TXx simulated using 
5 GCMs is shown in Figure 7.23b.   

The bias in the multi-model simulated (MMM) 
Annual TXx with respect to ERA5 downscaled 
data is shown in Figure 7.23c. The warm bias is 
between 1-2 deg. Celsius in the grids confined 
only over the northernmost land points and 
coastal land points of Singapore. 



 
Figure 7.22: Annual mean temperature in (a) ERA5 downscaled by SINGV (SINGV-ERA5) (b) Multimodel mean of downscaled 
GCM simulations with SINGV (SINGV-MMM) and (c) shows the bias in SINGV-MMM relative to SINGV-ERA5 (i.e. b-a). 
 

 
Figure 7.23: Annual TXx in (a) ERA5 downscaled by SINGV (SINGV-ERA5) (b) Multimodel mean of downscaled GCM 
simulations with SINGV (SINGV-MMM) and (c) shows the bias in SINGV-MMM relative to  SINGV-ERA5 (i.e. b-a). 
 

 
Figure 7.24: Annual mean relative humidity in (a) ERA5 downscaled by SINGV (SINGV-ERA5) (b) Multimodel mean of 
downscaled GCM simulations with SINGV (SINGV-MMM). (c) the bias in SINGV-MMM relative to SINGV-ERA5 (i.e. b -a). 

 



7.6.5 Relative Humidity 

The annual mean relative humidity over 
Singapore is shown in Figure 7.24. The mean 
relative values range from 70-90%, which is 
typical of a humid tropical location. 

 The SINGV-RCM simulations at 2 km resolution 
forced by SINGV-RCM 8 km obtained from forcing 
ERA5 reanalysis is shown in Figure 7.24a and the 
multi-model mean  pattern of annual mean relative 
humidity simulated using 5 GCMs is shown in 
Figure 7.24b. The bias in the simulated annual 

mean relative humidity with respect to ERA5 
downscaled  dataset is  shown in Figure 7.24c. 

The annual mean relative humidity bias for MMM 
downscaled simulations (Figure 7.24c) shows 
negative bias over the east and west of central 
land grids and exhibits less biases over the 
southern coastal grids of Singapore. 
 

7.6.6 Winds 

The annual mean wind speed over Singapore is 
shown in Figure 7.25. The annual mean wind 
speed values range from 0-5 m/s. 

 
Figure 7.25: Annual mean wind speed in (a) ERA5 downscaled by SINGV (SINGV-ERA5) (b) Multimodel mean of downscaled 
GCM simulations with SINGV (SINGV-MMM). (c) the bias in SINGV-MMM relative to SINGV-ERA5 (i.e. b -a). 

 
The SINGV-RCM simulations at 2 km resolution 
forced by SINGV-RCM 8 km obtained from forcing 
ERA5 reanalysis is shown in Figure 7.25a and the 
multi-model pattern of annual mean wind speed 
simulated using 5 GCMs is shown in Figure 7.25b. 
The bias in the simulated annual mean wind 
speed with respect to ERA5 downscaled dataset 
is shown in Figure 7.25c. 

The annual mean wind speed bias for MMM 
downscaled simulations (Figure 7.25c) shows 
positive bias over the most of northern coastal grid 
points and exhibits less biases over the land grids 
of Singapore. 
 

 

7.8 Summary 

In summary, the downscaled simulations from 
ERA5 as well as 6 GCMs to 8 km resolution over 
South East Asia have shown added value in each 
variable compared to observations. Though the 2 
km is not statistically different to 8 km over the 
western Maritime continent domain, to balance 
between very high computation costs and to 
benefit from high-resolution climate downscaling, 
we performed 2 km time slice simulations over the 
western Maritime continent domain in the 
historical as well as in the future for certain 
specific agency applications. 

Following are some of the key summary points 
from this study: 



 

 

1. We have clearly shown that there are added 
values in downscaling the coarse resolution 
driving models namely ERA-5 and 6 GCMs to 
8 km and further to 2 km resolution. 

2. We have clearly demonstrated the SINGV-
RCM downscaling is consistent with the parent 
driving model and follows the long-term trends 
and variability of the parent driving model. 

3. In this chapter, we evaluated the downscaled 
simulations of important meteorological 
parameters like precipitation, temperature, 
relative humidity as well as wind speed for 
different time scales of variability from diurnal 
to seasonal and their annual cycles are 
reproduced well in the model. 

4. The important meteorological variables 
simulated by SINGV-RCM are compared with 
the available high-resolution regional 
observations like in situ (ground-based 
stations) and satellite merged products for 
establishing the model’s skill in the historical 
period. 

5. We have also brought out that the model is able 
to capture the regional climate drivers like 
remote teleconnection (ENSO-teleconnection) 
and processes like cold surges over this region 
by performing diagnostics with both 
observational data as well as simulated data. 

6. Finally, the model is also evaluated over 
Singapore land grids using high resolution 
station observations in capturing the climate of 
the city state. 

This chapter has documented the added value 
brought by the dynamical downscaling using 
SINGV-RCM to 8 km and 2 km resolution over 
SEA and WMC domains and the model’s skill in 
capturing the different times scales of variability 
and also its ability to capture different regional 
processes. Further the usefulness of high-
resolution 2km simulation in capturing the climate 
of a city state like Singapore is evident when 
compared with very high-resolution (both 
temporal as well as spatial) insitu station datasets.
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Appendix 
 

 
 
Figure A7.1: Mean JJA 850 hPa winds (quivers) and wind speed (shaded) in (a) ERA5, (b) Mutimodel mean of 49 CMIP6 
models, (c) Multimodel mean of GCMs used in downscaling. (d) shows the bias of the 49 CMIP6 models (i.e. b-a), while (e) 

shows the bias in the GCMs used in downscaling (i.e. c-a). Data in these plots have been regridded to 1.5x1.5 degrees.  
 
 
 

 

Figure A7.2: Mean DJF 850 hPa winds (quivers) and wind speed (shaded) in (a) ERA5, (b) Mutimodel mean of 49 CMIP6 
models, (c) Multimodel mean of GCMs used in downscaling. (d) shows the bias of the 49 CMIP6 models (i.e. b-a), while (e) 
shows the bias in the GCMs used in downscaling (i.e. c-a). Data in these plots have been regridded to 1.5x1.5 degrees.  
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8.1 Introduction 

In the V3 study, the SINGV-RCM has been used 
to dynamically downscale six sub-selected CMIP6 
GCMs over the SEA domain at 8 km horizontal 
resolution for the historical period (1955-2014) 
and for the future (2015-2099) under 3 IPCC AR6 
global warming scenarios (SSP1-2.6, SSP2-4.5 
and SSP5-8.5). This dataset provides the most 
up-to-date and highest-resolution climate change 
projections over the SEA region when writing this 
report. 

Although the regional climate change projections 
were also presented in Chapter 4 of this report 
using CMIP6 GCM outputs and from the existing 
literature, results presented in this chapter are 
based on the 8 km dynamically downscaled 
projections. The 8 km downscaled projections, 
although not expected to significantly deviate from 
the GCM-based projections when it comes to 
large-scale drivers, are still expected to add a lot 
more spatial details that cannot be seen from 
GCM data due to their coarser resolution. 

This chapter presents the projections of means 
and extremes for key climate variables (rainfall, 
temperature, and relative humidity) over the 
region and key climate drivers (monsoons, 
northeast monsoon surges, and ENSO 
teleconnections). Where appropriate, we also 
discuss related changes reported in the literature. 
 

8.2 Data and Methodology 

This chapter makes use of the historical (1995-
2014) and future (mid-century: 2040-2059 and 
end-century: 2080-2099) 8 km downscaled data 
over SEA under the 3 SSPs (SSP1-2.6, SSP2-4.5, 
and SSP5-8.5) to compute projected changes in 
means and extremes for some key climate 
variables and some key climate drivers. 

Specifically, we compute the mean changes in 
rainfall and temperature on annual and seasonal 
timescales (DJF, MAM, JJA, and SON) for mid- 
and end-century under the 3 SSPs. In addition to 
the mean, we also compute the changes in 
temperature and rainfall extremes. For rainfall 
extremes, we compute changes in the annual 
maximum 1-day rainfall (RX1day) and annual 
maximum 5-day rainfall (RX5day), and for 

temperature extremes, we compute changes in 
the daily maximum and daily minimum 
temperatures. We also compute changes in the 
mean near-surface relative humidity on annual 
and seasonal timescales for mid- and end-century 
under the 3 SSPs. 

Along with the computation of changes in key 
climate variables, we also compute changes in 
some of the important large-scale climate drivers 
over the region. As mentioned above, we don’t 
expect any significant deviations in the projected 
changes of the large-scale climate drivers 
compared to the driving GCMs, except for more 
spatial details in the downscaled simulations. 
Specifically, (1) we compute projected changes in 
the 850hPa winds for each of the seasons 
mentioned above and, along with the seasonal 
mean rainfall changes, infer projected changes in 
the monsoon circulation and associated rainfall, 
(2) we compute the projected changes in 850 hPa 
winds and rainfall associated with the northeast 
monsoon surges, and (3) we present projected 
changes in the JJA ENSO-rainfall teleconnection 
by computing correlation coefficient of the 8 km 
downscaled rainfall with the Nino3.4 SSTs from 
the driving GCMs. 
 

8.3 Climate Change Projections 
over the Maritime Continent 

In this section, we present the projections of key 
climate variables (rainfall, temperature, and 
relative humidity) over the MC from the 8km 
downscaled projections. 

8.3.1 Changes in annual mean rainfall 

Figure 8.1 shows the projected changes in the 
annual mean rainfall over SEA (left panel) and 
SEA land-only points (right panel) in the mid-
century and end-century relative to the historical 
baseline under the three SSP scenarios. They are 
also shown in tabular form in Tables 8.1 and 8.2 
for readability. 

Overall, there is a projected increase in annual 
mean domain-average rainfall over SEA during 
the mid and end centuries. Based on the multi-
model mean, the end-century change is higher 
than the mid-century change for each of the 
scenarios. The inter-scenario spread is larger 
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during the end of the century (more than 3%) 
compared to the mid-century (within 1%). The 
multi-model end-century changes indicate larger 
increases in domain-average rainfall under 
scenarios with greater warming, i.e., change 
under SSP5-8.5 being higher than SSP2-4.5, 
which in turn is higher than SSP1-2.6.  

We also find the projected end-century mean 
under SSP5-8.5 to be positively skewed due to an 
outlier model (see the difference between the thin 
line and the diamond in the left panel of Figure 
8.1). 

Table 8.1: Projected changes in annual mean rainfall 
(percent change) - SEA 

ANN Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 2.1 0.6 to 4.0 2.9 1.3 to 5.7 

SSP2-4.5 3.0 1.2 to 4.9 4.0 1.7 to 5.6 

SSP5-8.5 2.7 1.0 to 5.3 6.0 0.2 to 15 

 
Table 8.2: Projected changes in annual mean rainfall 
(percent change) - SEA land regions 

ANN Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 2.9 0.4 to 4.5 3.9 2.6 to 5.5 

SSP2-4.5 4.0 1.6 to 6.6 5.8 3.8 to 7.9 

SSP5-8.5 4.0 0.5 to 6.3 8.7 4.2 to 13.4 

 
Figure 8.1: Percentage change of annual mean rainfall (pr) over the mid- (2040-59) and end-century (2080-99) period for the 
six downscaled GCMs (8km) over the SEA domain (left) and SEA land only (right) relative to the historical (1995-2014) baselines. 
The line and diamond represent the mean and median using the six models, respectively. 

 

 

Over SEA land points, the projected changes 
show similar behaviour as the domain average. 
However, the projected change over land is higher 
than seen over the entire domain, suggesting 
higher rainfall changes over land than ocean 
points. Also, the positive skew seen in the 
projected end-century mean under SSP5-8.5 is 
less prominent for SEA land, suggesting that the 
outlier model projects significant positive changes 
over the ocean points. 
 

8.3.2 Changes in seasonal mean rainfall 

Figure. 8.2 shows the projected changes in the 
seasonal mean rainfall over SEA land in the mid-
century and end century relative to the historical 

under three SSP scenarios using 8km 
downscaled GCM simulations. For readability, 
they are also shown in tabular form in Tables 8.3-
8.6 for land. As seen in Figure 8.2, the projected 
seasonal multi-model mean rainfall is expected to 
increase both in mid-century and end century 
across different seasons. During the DJF season, 
the multi-model seasonal mean rainfall is 
projected to increase with warming both in mid-
century and end century (Table 8.3). In the mid-
century, the rainfall changes are similar in SSP1-
2.6 (2.8%) and SSP2-4.5 (2.8%) but are larger 
under SSP5-8.5 (4.6%). In the end century, multi-
model rainfall is projected to increase across all 
scenarios from SSP1-2.6 (2.4%), to SSP2-4.5 
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(5.0%), to SSP5-8.5(8.0%). The end-century 
multi-model mean rainfall projections are larger 
than the mid-century projections in SSP2-4.5 and 
SSP5-8.5 but slightly smaller in SSP1-2.6. 
 
Table 8.3: Projected changes in seasonal mean rainfall 
(percent change) - DJF 

DJF Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 2.8 -1.4 to 5.8 2.4 -0.3 to 10.6 

SSP2-4.5 2.8 -3.2 to 5.9 5.0 0 to 10.5 

SSP5-8.5 4.6 1.2 to 8.5 8.0 2.5 to 14.5 

 
For the MAM season, the rainfall is projected to 
increase over the SEA both in mid-century and 
end century compared to the historical period 
across all the scenarios. Both in the mid-century 
and end century, rainfall is projected to increase 
with warming from SSP1-2.6 to SSP5-8.5. The 
difference between mid-century and end-century 
changes is larger in SSP2-4.5 and SSP5-8.5 
(~3%) than in SSP1-2.6 (~1.5%). 
 
Table 8.4: Projected changes in seasonal mean rainfall 
(percent change) - MAM 

MAM Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 1.3 -3.1 to 4.2 2.8 0.2 to 5.8 

SSP2-4.5 2.2 -1.5 to 6.3 5.3 0.4 to 10.6 

SSP5-8.5 4.0 -0.9 to 6.6 7.5 0.2 to 16.8 

 
Overall, the seasonal rainfall projections for the 
JJA seasons show an increase both in mid-
century and end-century compared to the 
historical period. In the mid-century, there is a 
difference in the magnitude of the rainfall 
increases with the SSP2-4.5 scenario projecting 
higher percentage changes compared to the other 
two scenarios. Across the scenarios between mid-
century and end century, the SSP5-8.5 scenario 
projects higher percentage increases in JJA 
rainfall compared to other two scenarios. 
 

Table 8.5: Projected changes in seasonal mean rainfall 
(percent change) - JJA 

JJA Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 3.3 0.8 to 9.6 5.0 0.8 to 10.7 

SSP2-4.5 5.3 3.1 to 10.2 5.1 -3.7 to 14.6 

SSP5-8.5 2.7 -1.3 to 9.4 7.4 -1.7 to 13.4 

 
For the SON season, the rainfall is projected to 
increase both in mid-century and end century 
compared to the historical with higher percentage 
changes in the end century. When moving across 
scenarios, at the end of the century there are 
higher percentage changes in the rainfall when 
moving from SSP2-4.5 to SSP5-8.5 scenario. 
 
Table 8.6: Projected changes in seasonal mean rainfall 
(percent change) - SON 

SON Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 4.1 0.0 to 7.1 4.9 1.7 to 8.0 

SSP2-4.5 5.5 -0.7 to 12.8 8.0 3.3 to 13.8 

SSP5-8.5 5.4 0.8 to 11.5 12.7 5.1 to 19.0 

 
Figure. 8.3 shows the percentage changes in the 
seasonal mean rainfall (ensemble mean) over 
SEA regions in the end century relative to the 
historical period under the SSP5-8.5 scenario. As 
seen in Figure 8.3, the seasonal mean rainfall 
changes vary with seasons over land and ocean 
regions. Increases in rainfall can be seen over 
parts of Indochina across the four seasons. 

For the DJF season, there are large percentage 
increases (>90%) over the climatologically dry 
regions of Thailand and Cambodia (see Figure 
7.4). In their analysis of changes of CORDEX 
RCMs over the end-century (2070-2099) relative 
to the historical (1976-2005), Tangang et al. 
(2020) noted increased rainfall of 10-20% over 
Indochina, which was consistent with the changes 
from GCMs. 
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Figure 8.2: Percentage change of seasonal mean rainfall (pr) over the mid- (2040-59) and end-century (2080-99) period for the 
6 downscaled GCMs (8km) over the SEA land relative to the historical (1995-2014) baselines. The line and diamond represent 
the mean and median using the 6 models, respectively. 

 

During the MAM season, the seasonal mean 
rainfall is projected to increase (10-70%) over 
many SEA land regions. During the JJA season, 
the mean rainfall projections show increases (10-
90%) over parts of Myanmar, Thailand, Malaysia, 
and around Java. Note that Java climatologically 
experiences little rainfall in JJA (see Figure 7.5) 
There is a percentage decrease (10-30%) in the 
mean rainfall over parts of Cambodia, Vietnam, 
Borneo, and New Guinea. For the SON season, 
the mean rainfall projections show percentage 
increases (10-90%) over the SEA nations with 
higher increases over Myanmar and around Nusa 

Tenggara. Tangang et al (2020) emphasize 
rainfall reduction of 10-30% in JJA, especially over 
Kalimantan and Sumatra and note that this drying 
has also been found in GCM simulations. They 
suggest it is linked to the equatorward contraction 
of the rising branch of the Hadley Circulation, the 
“deep tropical squeeze” discussed in Fu 2015. 
They also remark upon a reduction of 10-20% in 
mean rainfall over Cambodia, Vietnam, and 
eastern Thailand in the RCMs, which is not seen 
in the GCMs. These drying features are reflected 
in SINGV-MMM to some extent.  
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Figure 8.3: Percentage change of ensemble-mean downscaled (8km) changes in seasonal mean rainfall over end-century 
(2080-99) relative to the historical period (1995-2014) over the SEA domain under the SSP5-8.5 scenario. 

 

8.3.3 Changes in rainfall extremes 
 
Figure.8.4 shows the percentage changes in the 
maximum 1-day rainfall (RX1day) over SEA 
across different seasons in the end century 
relative to the historical under the SSP5-8.5 
scenario. End-century RX1day is expected to 
increase in most of the SEA land regions across 
the four seasons. 
 
During the DJF season, the projected RX1day 
percentage increases are largest over Thailand, 

Laos, and Cambodia. For the MAM season, the 
RX1day projections show increases (30%-70%) 
over the SEA land regions. During the JJA 
season, the projected RX1day increases (10%-
100%) over most of the SEA land regions with 
decreases (-5% to -40%) around the Java sea. 
For the SON season, the RX1day projections 
increase (30%-100%) across the SEA land 
regions. Some of the largest percentage 
increases occur over climatologically dry regions 
(e.g. Indochina in DJF, around the Java sea in 
JJA). 
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Figure 8.4: Percentage change of ensemble-mean downscaled (8km) changes in seasonal RX1day over end-century (2080-
99) relative to the historical period (1995-2014) over the SEA domain under the SSP5-8.5 scenario. 

 
Figure 8.5 shows the percentage changes in the 
maximum 5-day rainfall (RX5day) over SEA 
across different seasons in the end century 
relative to the historical under the high emission 
scenario (SSP5-8.5). RX5day is projected to 
increase with warming over much of SEA in most 
of the seasons, with features qualitatively similar 
to RX1day. During the DJF season, the RX5day 
projections show an increase (10%-100%) over 
much of the domain, with higher percentage 

increases over Thailand, Laos, and Cambodia. 
For the MAM season, the projected RX5day 
increases (30%-70%) across much of SEA land in 
the end century with some of the largest increases 
occurring west of Myanmar. During the JJA 
season, the projected RX5day increases with 
higher percentages (50%-90%) over the northern 
SEA nations. For the SON season, the RX5day 
projections show an increase (30%-100%) over 
most of the SEA nations.  
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Figure 8.5: Percentage change of ensemble-mean downscaled (8km) changes in seasonal RX5day over end-
century (2080-99) relative to the historical period (1995-2014) over the SEA domain under the SSP5-8.5 scenario. 

 

8.3.4 Changes in annual mean temperature 
 
Figure. 8.6 shows the projected changes in the 
annual mean near-surface air temperatures (tas) 
over SEA and SEA land regions during the mid-
century (2040-59) and end century (2080-99) 
compared to historical (1995-2014) under three 
SSP scenarios using 8 km downscaled 
simulations. For readability, they are also shown 
in tabular form in Tables 8.7-8.8. Annual mean 
near-surface air temperatures increase over SEA 
and SEA land regions under different SSP 
scenarios. Over the SEA domain, the multi-model 
mean projected temperatures are expected to 
increase by at least 0.8oC in the mid-century and 
by at least 1.0 oC in the end century. Based on the 
multi-model mean projections, SEA land will 
experience increased warming as compared to 
the SEA domain by 0.1 oC to 0.7 oC (Tables 8.7 
and 8.8) and up to 4.0 oC by the end of the century. 

Land-amplified warming has been observed 
across multiple climate models, and can be 
explained by a simple analytical theory (Bryne and 
O’Gorman 2018) 
 
Table 8.7: Projected changes in annual mean temperature - 
SEA  

ANN Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 0.8 0.6 to 1.1 1.0 0.5 to 1.4 

SSP2-4.5 1.1 0.7 to 1.5 1.7 1.2 to 2.5 

SSP5-8.5 1.4 0.9 to 1.9 3.3 2.4 to 4.4 

 
Table 8.8: Projected changes in annual mean temperature - 
SEA land 

ANN Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 1.0 0.6 to 1.4 1.1 0.5 to 1.7 

SSP2-4.5 1.2 0.8 to 1.8 2.1 1.4 to 3.0 

SSP5-8.5 1.6 1.1 to 2.2 4.0 2.9 to 5.4 
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Figure 8.6: Average changes in annual mean  near-surface air temperature (tas) over the mid- (2040-59) and end-century 
(2080-99) period for the 6 downscaled GCMs (8km) over the SEA domain (left) and SEA land only (right) relative to the historical 
(1995-2014) baselines. The line and diamond represent the mean and median using the 6 models, respectively. 

 

Figure.8.7 shows the projected changes in the 
annual maximum (tasmax) and minimum near-
surface air temperatures (tasmin) over SEA land 
regions in the mid-century and end century 
compared to historical under three SSP scenarios 
using 8 km downscaled GCM simulations. For 
readability, they are also shown in tabular form in 
Tables 8.9-8.10. As seen in Figure .8.7, the 
tasmax and tasmin temperatures over SEA land 

increase by similar amounts with warming across 
the different scenarios and time periods. There is 
a minimum increase of 1oC of the tasmax and 
tasmin in mid and end century. Across the 
scenarios, towards the end century there is a 
higher degree of increases in tasmax and tasmin 
over SEA land regions under the SSP5-8.5 
scenario. The qualitative changes in tasmax and 
tasmin are similar to those in tas (Figure 8.6). 

 

 
Figure 8.7: Average changes in annual maximum (tasmax) and minimum (tasmin) near-surface air temperature over the mid- 
(2040-59) and end-century (2080-99) period for the 6 downscaled GCMs (8km) over the SEA land relative to the historical (1995-
2014) baselines. The line and diamond represent the mean and median using the 6 models, respectively. 
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Table 8.9: Projected changes in annual maximum 
temperature - SEA land 

ANN Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 1.0 0.6 to 1.3 1.1 0.5 to 1.7 

SSP2-4.5 1.2 0.7 to 1.7 2.1 1.4 to 3.0 

SSP5-8.5 1.6 1.0 to 2.2 4.0 2.9 to 5.4 

 
Table 8.10: Projected changes in annual minimum 
temperature - SEA land 

ANN Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 1.0 0.7 to 1.5 1.2 0.6 to 1.8 

SSP2-4.5 1.3 0.8 to 1.9 2.2 1.5 to 3.0 

SSP5-8.5 1.7 1.1 to 2.3 4.1 3.1 to 5.5 

 

8.3.5 Changes in seasonal mean temperature 

Figure 8.8 shows the projected changes in the 
seasonal mean of daily maximum near surface 
temperatures (tasmax) over SEA land regions in 
the mid-century and end century relative to the 
historical under three SSP scenarios. For 
readability, they are also shown in tabular form in 
Tables 8.11-8.14. The projected tasmax 
temperatures increase with warming over SEA 
land regions across all the seasons. Across all 
seasons, the projected multi-model tasmax 
increases with warming in mid-century and end 
century. Across the scenarios, towards the end of 
the century there is an increased mean seasonal 
maximum temperature with higher increases 
under the SSP5-8.5 scenario (~3.9oC). Based on 
the multi-model mean, across the seasons, mid-

century tasmax would change from 0.9 oC -1.7 oC 
while end-century seasonal tasmax would change 
from 1.0 oC -4.1 oC. 
 
Table 8.11: Projected changes in seasonal maximum 
temperature - DJF 

DJF Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 0.9 0.6 to 1.3 1.1 0.5 to 1.6 

SSP2-4.5 1.2 0.6 to 1.6 2.0 1.2 to 2.8 

SSP5-8.5 1.6 0.9 to 2.1 3.9 2.8 to 5.1 

 
Table 8.12: Projected changes in seasonal maximum 
temperature - MAM 

MAM Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 1.1 0.6 to 1.4 1.2 0.5 to 1.9 

SSP2-4.5 1.2 0.8 to 1.9 2.2 1.5 to 3.2 

SSP5-8.5 1.7 1.0 to 2.2 4.1 2.9 to 5.7 

 
Table 8.13: Projected changes in seasonal maximum 
temperature - JJA 

JJA Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 0.9 0.5 to 1.5 1.0 0.4 to 1.8 

SSP2-4.5 1.2 0.8 to 1.9 2.1 1.3 to 3.2 

SSP5-8.5 1.6 1.0 to 2.4 4.0 2.9 to 5.7 

 
Table 8.14: Projected changes in seasonal maximum 
temperature - SON 

SON Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 0.9 0.5 to 1.2 1.0 0.4 to 1.6 

SSP2-4.5 1.1 0.8 to 1.7 2.0 1.5 to 2.7 

SSP5-8.5 1.6 1.2 to 2.1 3.9 2.8 to 5.3 
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Figure 8.8: Average changes in seasonal maximum near-surface air temperature (tasmax) over the mid- (2040-59) and end-
century (2080-99) period for the 6 downscaled GCMs (8km) over the SEA land relative to the historical (1995-2014) baselines. 
The line and diamond represent the mean and median using the 6 models, respectively. 

 

Figure 8.9 shows the projected changes in the 
seasonal mean near-surface air temperatures 
over SEA in the end century (2080-99) relative to 
the historical (1995-2014) under the SSP5-8.5 
scenario. The near-surface air temperatures are 
projected to increase in the end century over the 
SEA domain with higher increases over the land 
compared to the surrounding oceanic regions. 
During the DJF season, the projections of near-
surface air temperatures increase in the range of 
2.5 to 5.5oC in the end century with higher values 
over Myanmar, Thailand, Laos and Cambodia.  
For the MAM season, the projected near-surface 

air temperatures increase by 2.5 to 6.0oC in the 
end century with higher increases over Myanmar, 
Thailand and Laos. During the JJA season, the 
projected near-surface air temperatures 
increased in the range of 2.0 to 6.0oC with higher 
increases over Laos, Vietnam, and Indonesia. The 
changes in JJA are of comparable magnitude to 
changes in JJA end-century (2070-2099) versus 
historical (1980-2009) temperatures in V2 
(Chapter 5). For the SON season, the projections 
of near-surface air temperatures show increases 
by 2.0 to 5.0oC in the end century. 
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Figure 8.9: Ensemble-mean (6 downscaled GCMs 8 km) changes in seasonal mean near-surface air temperature over end-
century (2080-99) relative to the historical period (1995-2014) over the SEA domain under the SSP5-8.5 scenario. 
 

 

8.3.6 Changes in temperature extremes 
 
Figure 8.10 shows the projected changes in the 
seasonal maximum of daily maximum 
temperatures (TXx) over the SEA domain in the 
end century relative to the historical under the 
SSP5-8.5 scenario. As seen in the Figure 8.10, 
the projected TXx increases over the SEA in the 
end century across the seasons with higher 
increases over the land regions compared to 
oceans. During the DJF season, the projected 
TXx increases in the range of 2.5 to 6.0oC. For the 
MAM season, the projections of TXx show 
increases by 3.0 to 6.0oC with higher increases 
over Laos, Vietnam, Borneo, Indonesia, and New 
Guinea. During the JJA season, the projected TXx 
increases in the range of 3.0 to 6.5oC with higher 
increases over Thailand, Cambodia, Laos, 
Vietnam, Borneo, and Indonesia. For the SON 
season, the projected TXx increases by 3.0 to 

6.0oC with higher increases over Cambodia, Laos, 
Vietnam, Borneo, and Indonesia.  

Figure 8.11 shows the projected changes in the 
seasonal minimum of daily minimum 
temperatures (TNn) over the SEA in the end 
century relative to the historical under the SSP5-
8.5 scenario. Projected TNn increases over the 
SEA with higher increases over the land regions. 
During the DJF season, the projected TNn 
increases in the range of 3.0 to 6.0oC with higher 
increases over Myanmar, Thailand, and 
Cambodia. For the MAM season, the projected 
TNn increases by 3.0 to 6.5oC with higher 
increases over Myanmar, Thailand, and 
Cambodia. During the JJA season, the projected 
TNn increases in the range of 3.0 to 5.0oC. For the 
SON season, the projected TNn increases in the 
range of 3.0 to 6.0oC with higher increases over 
Myanmar, Thailand, and Cambodia. 
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Figure 8.10: Ensemble-mean (6 downscaled GCMs 8 km) changes in seasonal maximum of daily maximum temperature (TXx) 
over end-century (2080-99) relative to the historical period (1995-2014) over the SEA domain under the SSP5-8.5 scenario. 
 
 

 
Figure 8.11: Ensemble-mean (6 downscaled GCMs 8 km) changes in seasonal minimum of daily minimum temperature (TNn) 
over end-century (2080-99) relative to the historical period (1995-2014) over the SEA domain under the SSP5-8.5 scenario. 
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8.3.7 Changes in relative humidity 

Figure 8.12 shows the percentage changes in the 
annual mean near-surface relative humidity (hurs) 
over SEA and SEA land regions in the mid-century 
and end century relative to the historical under 
three SSP scenarios. For readability, they are also 
shown in tabular form in Tables 8.15-8.16. As 
seen in Figure 8.12, the multi-model mean 
indicates hurs increases over SEA and decreases 
over SEA land across scenarios and time periods. 
Similar to the warming over land, decreases in 
land hurs with warming have been reported in 
other studies and has some theoretical support 
(Byrne and O’Gorman 2018). 

Table 8.15: Projected changes in annual mean near-surface 
relative humidity - SEA 

ANN Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 0.13 -0.05 to 0.27 0.10 -0.15 to 0.27 

SSP2-4.5 0.22 0.03 to 0.41 0.29 0.07 to 0.53 

SSP5-8.5 0.27 0.12 to 0.42 0.38 -0.09 to 0.83 

 
Table 8.16: Projected changes in annual mean near-surface 
relative humidity - SEA land 

ANN Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 -0.20 -0.65 to 0.23 -0.21 -0.73 to 0.29 

SSP2-4.5 -0.18 -0.84 to 0.21 -0.57 -1.20 to -0.07 

SSP5-8.5 -0.32 -1.08 to 0.11 -1.35 -2.73 to -0.38 

 
Figure 8.12: Average changes in annual mean near-surface relative humidity (hurs) over the mid- (2040-59) and end-century 
(2080-99) period for the 6 downscaled GCMs (8km) over the SEA domain (left) and SEA land only (right), with respect to their 
historical (1995-2014) baselines. The line and diamond represent the mean and median using the 6 models, respectively. 

 

Figure 8.13 shows the percentage changes of 
seasonal mean hurs over SEA and SEA land 
regions in the mid-century and end century 
relative to the historical under three SSP 
scenarios. There are seasonal differences in the 
projected hurs over SEA and SEA land regions in 
mid-century and end century. In general, 
percentage changes in multi-model mean hurs 
over SEA land are either small or negative, 
ranging from 0 to -1.9%. For readability, they are 
also shown in tabular form in Tables 8.17-8.20. 
 
During the DJF season, in the mid-century the 
projected multi-model mean hurs remained 

unchanged in all three scenarios. In the end 
century, the projected multi-model mean hurs 
decreased by 0.0 to -0.9%. 
 
Table 8.17: Projected changes in seasonal mean near-
surface relative humidity  

DJF Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 0.0 -0.4 to 0.6 0.0 -0.4 to 0.4 

SSP2-4.5 0.0 -0.4 to 0.6 -0.3 -0.5 to 0.1 

SSP5-8.5 0.0 -0.9 to 0.7 -0.9 -1.8 to -0.3 

 
For the MAM season, in the mid-century the 
projected multi-model mean hurs decreases in the 
range of -0.4 % to -0.5%. In the end century, the 
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projected multi-model mean hurs decreases by -
0.6% to -1.3%. 

Table 8.18: Projected changes in seasonal mean near-
surface relative humidity  

MAM Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 -0.4 -0.9 to 0.2 -0.6 -1.3 to 0.3 

SSP2-4.5 -0.4 -1.2 to 0.1 -0.8 -1.6 to 0.2 

SSP5-8.5 -0.5 -1.1 to 0.0 -1.3 -2.7 to -0.4 

 
During the JJA season, in the mid-century the 
projected hurs decreases in the range of -0.2% to 
-0.6%. In the end century, the projected hurs 
decreases by -0.2% to -1.9%.  

Table 8.19: Projected changes in seasonal mean near-
surface relative humidity  

JJA Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 -0.2 -1.0 to 0.2 -0.2 -0.6 to 0.2 

SSP2-4.5 -0.2 -1.1 to 0.3 -0.8 -1.9 to -0.1 

SSP5-8.5 -0.6 -1.5 to 0.0 -1.9 -3.7 to -0.7 

 
For the SON season, in the mid-century the 
projected hurs decreases in the range of -0.1 % to 
-0.2%. In the end century, the projected hurs 
changes range from 0% to -1.3%.  

Table 8.20: Projected changes in seasonal mean near-
surface relative humidity  

SON Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 -0.1 -0.9 to 0.5 0.0 -0.6 to 0.4 

SSP2-4.5 -0.1 -0.9 to 0.6 -0.4 -1.3 to 0.2 

SSP5-8.5 -0.2 -0.9 to 0.6 -1.3 -3.0 to 0.1 

 

 

 
Figure 8.13: Average changes in seasonal mean near-surface relative humidity (hurs) over the mid- (2040-59) and end-century 
(2080-99) period for the 6 downscaled GCMs (8km) over the SEA land relative to the historical (1995-2014) baselines. The line 
and diamond represent the mean and median using the 6 models, respectively. 
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Figure 8.14 shows the multi-model mean 
percentage changes in the seasonal mean hurs 
over the SEA in the end century relative to the 
historical under the SSP5-8.5 scenario. As seen 
in Figure 8.14, there are seasonal differences in 
the hurs over the SEA land and ocean regions. 
During the DJF season, the projected hurs 
decreases (-1% to -6%) over most of the SEA land 
regions and increases (1% to 4%) over oceans in 
the end century.  

For the MAM season, the projected hurs 
decreases in the range of -1% to -6% over the 

SEA land regions and slightly increases (1% to 
3%) over the oceans.  

During the JJA season, the projected hurs 
decreases (-1% to -9%) over the land regions with 
higher decreases over Cambodia, Vietnam, 
Indonesia, and New Guinea. The projected hurs 
over the oceanic regions increases (1% to 4%) 
during the JJA season. For the SON season, the 
projected hurs decreases (-1% to -7%) over the 
land regions and increases (1% to 6%) over the 
oceans. 

 

 
Figure 8.14: Ensemble-mean downscaled (8km) changes in seasonal mean near-surface relative humidity over end-century 
(2080-99) relative to the historical period (1995-2014) over the SEA domain under the SSP5-8.5 scenario. 

 

8.4 Changes in Regional Climate 
Drivers 

In this section we present projected changes in 
the important regional climate drivers discussed in 
Chapters 3, 4, 5, and 7. While we don’t expect 
significant changes in the projected regional 
climate drivers in the downscaled simulations as 
compared to that seen from the driving GCMs, it 
is worth investigating if there are any notable 
differences. 
 

8.4.1 Monsoons 

In DJF (see Figure 8.15a), changes in wind 
speeds are small over the South China Sea, 
where some of the strongest climatological winds 
occur. There are anomalous westerlies east of the 
Philippines as well as anomalous easterlies west 
of Sumatra, representing a weakening of the 
climatological flow. Similar westerly and easterly 
anomalies can be seen in Tangang et al 2020, 
which examined changes in end-century (2071-
2099) winds under RCP8.5 using the CORDEX 
ensemble, with changes over the South China 
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Sea being within 1 m/s. These westerly and 
easterly anomalies are also similar to those in 
SON (Figure 8.15d). The changes in winds in 
MAM are generally small (Figure 8.15b). 

In JJA, (Figure 8.15c) there is a strengthening of 
the monsoon flow over Indochina, with an 
anomalous easterly flow over much of the western 

Maritime Continent. Tangang et al 2020 found a 
similar westerly flow over Indochina and easterly 
flow over Sumatra towards the Indian ocean. In all 
seasons, a weakening of the flow with anomalous 
easterlies over the Indian ocean can be seen. 
Overall, the wind anomalies are most notable in 
JJA. 

 

 
Figure 8.15: shows the change in 850 hPa wind direction (arrows, colors indicate magnitude) and climatological wind speeds 
(contours) over Southeast Asia during 2080-2099 in SSP5-8.5 with respect to 1995-2014 in SINGV-MMM (containing six 8km 
model outputs). 

 

8.4.2 Northeast Monsoon surge 
 
As highlighted in Section 4.5.5, monsoon cold 
surges are a key synoptic feature of the boreal 
winter circulation over the Maritime Continent and 
can lead to extreme rainfall. The cold surges can 
also be enhanced by the presence of a favorable 
phase of the MJO (e.g. Lim et al., 2017) and might 
also aid the MJO in its passage across the 
Maritime Continent (Pang et al., 2018). Given the 
importance of boreal winter monsoon cold surges 
to the weather and climate of SEA, it is important 
to analyse how the cold surges are projected to 
change under global warming in the V3 
downscaled simulations. It is also important to 
check if there are any important differences in the 
downscaled projections of cold surges as 

compared to that seen in the driving CMIP6 GCMs 
(see Section 4.5.5 and Figure 4.10). 

The changes over the Western Maritime 
Continent are relatively small (Figure 8.16). There 
is a weakening in surge winds over the Java Sea, 
and more rain over areas east of Borneo. There 
are also increased outflows towards Indochina. 
There are some similarities between changes in 
the composite over surge days (which occur in 
NDJF by definition) and the changes in wind 
speed over DJF - small changes over the South 
China Sea, anomalous westerlies east of the 
Philippines as well as anomalous easterlies west 
of Sumatra. The pattern of rainfall change is also 
similar to that of DJF rainfall e.g. increases over 
the Java sea and east of the Philippines. 
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Similar to the parent GCMs, the downscaled 
simulations predict easterly anomalies over 
Indochina and west of Sumatra, as well as 
westerly anomalies north of New Guinea. There is 
also an increase in multi-model surge frequency 
from 17% in historical to 18% in SSP5-8.5, similar 
to the parent GCMs, where surge frequency 
increases from 18% to 19%. In contrast, the 

magnitude of precipitation and rainfall changes in 
the downscaled simulations are also enhanced 
relative to the parent GCMs. There are also 
differences in the details of rainfall: the multimodel 
mean of the parent GCMs predicts rainfall 
increase over South Sumatra and Borneo, but the 
downscaled simulation places the rainfall increase 
primarily over the Java Sea. 

 

 
Figure 8.16: Upper panel shows the change in 850 hPa wind direction (arrows) and rainfall (shaded) composited over surge 
days from 2080-2099 in SSP5-8.5 with respect to 1995-2014 in 6 GCMs, regridded to 1.5 x1.5 (those used for downscaling). 
Lower panel shows the change in 850 hPa wind direction (arrows) and rainfall (shaded) composited over surge days from 2080-
2099 in SSP5-8.5 with respect to 1995-2014 in SINGV-MMM (containing six 8km model outputs). 
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8.4.3 ENSO Teleconnection 

Here in this section we focus on 6 SINGV-RCMs 
and their forcing GCMs to address changes in the 
ENSO teleconnection. Here we show that RCMs 
and GCMs produce very similar and consistent 
spatial patterns of the ENSO teleconnection 
(negative over the equatorial central MC and 
positive over the western Pacific) for both 
historical and future periods. The full results for 
the historical period are shown in chapter 7, 
section 7.5.3 Fig. 7.17. As to the future change 
(Figure 8.17), GCMs and RCMs both suggest that 
the negative correlation area over the equatorial 
MC is enlarged. The positive correlation area over 

the eastern MC and western Pacific are reduced, 
and the negative correlation extends to the east. 
These agree with the understanding that the 
whole zonal dipole pattern of the ENSO 
teleconnection shifts eastward, as shown by 32 
GCMs in Chapter 4 and in our recent study (Chen 
et al. 2023).  

Besides the large-scale consistency with GCMs, 
RCMs do offer additional detailed spatial 
representation of the ENSO teleconnection, 
especially over the mountainous islands (e.g. over 
New Guinea). Future studies may look into ENSO-
induced rainfall variability at the local scale 
enabled by the high-resolution RCMs.  

 

 

Figure 8.17: JJA ENSO-rainfall teleconnection (correlation coefficient) over the Maritime Continent (left: GCM mean, right: RCM 
mean. Upper: historical period (1995-2014) . Lower: future (2080-2099) in the SSP585 scenario).  
 

 

8.5 Summary 

This chapter uses projections of 6 CMIP6 GCMs 
downscaled by SINGV-RCM to examine climate 
change at regional scales. It examines changes in 
some important climate variables (e.g. 
temperature and rainfall). A comparison of the 
representation of some large-scale drivers are 
also provided to examine consistency with the 
GCMs. 

Annual-mean domain-average rainfall over SEA is 
projected to increase both in the mid and end 
century. While the end-century change projected 
by the multi-model mean is higher than the mid-
century change for each of the scenarios, the 
magnitude of the inter-model spread can be 
significant compared to differences in the multi-
model mean. The increases noted in the annual 
mean occur as a result of spatially complex 
changes in the individual seasons. For example, 
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there are large percentage increases in 
climatologically dry periods (e.g. parts of 
Indochina in DJF and regions around the Java 
Sea in JJA), and drying over parts of the South 
China Sea in all seasons.  

Extreme rainfall, as quantified by maximum 1-day 
rainfall (RX1day) and (RX5day), are expected to 
increase in most of the SEA land regions across 
the four seasons. Similar to changes in the mean 
rainfall, some of the largest percentage changes 
are seen over climatologically dry regions.  

As for temperature, multi-model mean projected 
near-surface air temperatures over the SEA 
domain are expected to increase by at least 0.8oC 
in the mid century and by at least 1.0oC in the end 
century. Based on the multi-model mean 
projections, SEA land will experience increased 
warming as compared to the SEA domain by 
0.1oC to 0.7oC in the mid-century (Tables 8.7 and 
8.8) and up to 4.0oC by the end of the century.  
This confirms the general expectation from 
existing studies that the land regions will 
experience more warming than ocean regions. 
Changes in annual maximum (tasmax) and 
annual minimum near-surface air-temperatures 
are qualitatively similar to those in tas. Based on 
the multi-model mean, across the seasons, mid-
century tasmax would change from 0.9oC-1.7oC 
while end-century seasonal tasmax would change 
from 1.0oC-4.1oC.  

Similarly, there are widespread increases in 
temperature extremes, as measured by changes 
in the seasonal maximum of daily maximum 
temperatures (TXx) over the SEA domain. The 
warming is larger over land areas as compared to 
ocean, exceeding 6oC in parts of Indochina during 
JJA and SON. In addition, the seasonal minimum 
of daily minimum temperatures (TNn) increases 
over much of the domain.  

Changes in multi-model seasonal mean near-
surface relative humidity (hurs) are either small or 
negative over land, ranging from 0 to -1.9%, while 
increases in hurs can be observed over the 
oceans. Across seasons, the largest decreases 
can be seen in JJA, especially over Indochina, 
Borneo, and New Guinea. Similar to the enhanced 
land warming discussed above, the reduction in 
relative humidity over land is consistent with 
findings from existing studies.  

Turning to the regional climate drivers, a 
weakening of the monsoonal flow with anomalous 
easterlies over the Indian ocean can be seen. 
Some of the largest changes occur in JJA, where 
there is also a strengthening of the monsoon flow 
over Indochina. The changes in the northeast 
monsoon cold surge are consistent with the GCM 
changes in terms of increased frequency, 
anomalous easterlies over Indochina and west of 
Sumatra, as well as anomalous westerlies north 
of New Guinea. In contrast, the magnitude of 
precipitation and rainfall changes in the 
downscaled simulations are also enhanced 
relative to the parent GCMs. There are also 
differences in the details of rainfall: the multimodel 
mean of the parent GCMs predicts rainfall 
increase over South Sumatra and Borneo, but the 
downscaled simulation places the rainfall increase 
primarily over the Java Sea.  

The changes in ENSO teleconnections are 
consistent with those of the parent GCMs, 
showing an eastward shift of the zonal dipole 
pattern such that the negative correlation over the 
equatorial MC is enlarged while the positive 
correlation over the eastern MC and Western 
Pacific are reduced. The downscaled models also 
offer additional fine-scale spatial details of the 
ENSO teleconnection.  

Overall, the downscaled projections indicate 
increases in temperature and temperature 
extremes, as well as rainfall extremes. Annual-
mean domain-average rainfall over SEA is 
projected to increase both in the mid and end 
century.  

Additionally, it's important to highlight the added 
value of future projections derived from high-
resolution RCMs when compared to the coarse-
resolution driving GCMs. In the Southeast Asia 
(SEA) domain, GCMs often exhibit smoothed 
spatial changes across islands in the equatorial 
Maritime Continents, attributed to their coarse 
resolutions at 1.5 degrees latitude/longitude. In 
contrast, high-resolution (8km) RCMs consistently 
produce large-scale changes similar to the driving 
GCMs, offering a more realistic representation of 
high rainfall variability in the high mountain areas 
of Java and Papua New Guinea. These 
enhancements prove crucial for advancing 
regional climate impact studies. 
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9.1 Introduction 

The main objective of the V3 study is to generate 
accurate and realistic future climate projections 
in order to assess and adapt to the impacts of 
climate change in Singapore. To achieve this, a 
subset of the latest and most advanced CMIP6 
GCMs that exhibit good performance over 
Southeast Asia has been carefully chosen to 
drive the regional dynamical downscaling 
simulations. 

Despite improvements made in both the global 
models and the regional climate model SINGV-
RCM, there are still residual biases present in 
the simulations, as shown in the evaluation 
chapter of the dynamical downscaling process 
(Chapter 7). In order to enhance the reliability of 
the climate change projections, it is necessary to 
adjust these biases. To achieve this, we 
conducted bias adjustments (BA) of the V3 
downscaled simulations using the widely 
recognized ISIMIP3 bias adjustment method 
(Lange, 2019). We also performed rigorous 
methodology evaluations. The aim was to 
ensure that the adjusted outcomes effectively 
reduced biases and were physically realistic. 
This adjustment process plays a crucial role in 
producing more accurate and dependable 
climate projections, which are essential for 
addressing climate change impacts in 
Singapore.  

By conducting bias adjustment of the V3 
downscaled simulations, we aim to refine the 
results and ensure they align more closely with 

observed data. Here we used the following 
references: (1) For precipitation, we utilized a 
newly developed krigged rainfall dataset for 
Singapore. (2) For other variables, we utilized 
the latest version of high-resolution ERA5-driven 
simulation dataset (ERA5-RCM). This dataset 
underwent careful evaluation and was found 
suitable for our bias adjustment purposes.  

In the data section, we will provide detailed 
information about the reference data and the 
model outputs used in our study. We will outline 
the sources and characteristics of the reference 
data as well as the specific model outputs from 
RCMs. 

In the methods section, we will elaborate on the 
specific configurations we utilized for each 
variable. These configurations have undergone 
thorough evaluation using pseudo reality 
experiments and have consistently yielded 
realistic outcomes. We will explain the 
methodology and approaches employed to 
ensure the reliability and accuracy of our results. 

Finally, in the results section, we will present the 
findings of the bias adjustment process for the 
model simulations, both in the historical period 
and in the future projections. Our bias 
adjustment techniques have demonstrated a 
very good performance. By applying these bias 
adjustments, we obtain more realistic RCM 
outputs, which are essential for conducting 
climate impact studies in the context of 
Singapore.

 
Table 9.1: List of downscaling simulations driven by sub-selected CMIP6 models 

CMIP6 model Ensemble ID ECS (K) GCM Resolution RCM Resolution 

ACCESS-CM2 r4i1p1f1 4.66 250km 8km, 2km 

EC-Earth3 r1i1p1f1 4.26 100km 8km, 2km 

MIROC6 r1i1p1f1 2.60 250km 8km 

MPI-ESM1-2-HR r1i1p1f1 2.98 100km 8km, 2km 

NorESM2-MM r1i1p1f1 2.49 100km 8km, 2km 

UKESM1-0-LL r1i1p1f2 5.36 250km 8km, 2km 

 

9.2 Data 

9.2.1 Simulations for bias adjustments 

In our study, we performed bias adjustments for 
regional climate model (RCM) downscaling 
simulations driven by six CMIP6 global climate 
models (GCMs) as shown in Table 9.1. It is 
worth noting that the downscaling simulation 

using the MIROC6 GCM was conducted only for 
the 8km resolution.  

Considering the availability of regional 
downscaling data (Table 9.2), we selected the 
20-year period from 1995 to 2014 as the 
historical base period for our analysis. This time 
frame allows us to capture a representative 
snapshot of the recent past and establish a 



 
 

baseline for comparison. For future projections, 
we focused on a 20-year period near the end of 
the 21st century to address the change, 
specifically from 2080 to 2099. By selecting 
these specific historical and future periods, we 

aimed to analyze and assess the changes in 
climate variables and their impacts over 
Singapore, providing valuable insights for 
climate change adaptation and planning in the 
region.

Table 9.2: Time period for model simulations 

Scenarios 
RCM @8km  

(SEA domain) 

RCM @2km  

(WMC domain) 

Historical 1955-2014 (60 yr) 1995-2014 (20 yr) 

Future (SSP126) 2015-2099 (85 yr) 2040-2059 (20 yr), 2080-2099 (20 yr) 

Future (SSP245) 2015-2099 (85 yr) 2040-2059 (20 yr), 2080-2099 (20 yr) 

Future (SSP585) 2015-2099 (85 yr) 2040-2059 (20 yr), 2080-2099 (20 yr) 

 

9.2.2 Domain for bias adjustments 
 
In our study, we defined three specific regions 
for analysis: the South East Asia domain (SEA), 
the West Maritime Continent domain (WMC), 
and Singapore (SG) (Table 9.3). These regions 
are depicted in Figure 9.1 as D1 and D2 for SEA 
and WMC, respectively, and Figure 9.2 

represents the SG domain. For the purpose of 
bias correction, we focused on conducting the 
adjustments specifically for the model 
simulations over the SG domain. To calculate 
Singapore-averaged results, we applied a 
landsea mask. This process enabled us to 
derive Singapore-specific climate information 
and assess the impacts of climate change on the 
country. 

Table 9.3: List of defined domains 

Domain 
Latitude and 

Longitude 

Grid info for 8km 

(lon) x (lat) 

Grid info for 2km 

(lon) x (lat) 
Remarks 

SEA 
18S-26N, 

80W-160W 
1120 x 560 N/A 8km model domain D1 

WMC 
7S-10N, 

93-110W 
237 x 236 936 x 943 2km model domain D2 

SG 
1.1N-1.54N, 

103.5W-104.15W 
10 x 7 36 x 24 

bias adjustment 

domain 

 

 

Figure 9.1: The V3 regional climate model domains. 8km resolution simulations are carried out over the D1 domain, and 

the 2km resolution simulations are carried out over the D2 domain. 



 

 

 
     Figure 9.2: Landsea mask for the SG region in the 2km resolution 

 

9.2.3 Variables for bias Adjustments 
 
Here we focus on the following daily variables to 
carry out the bias adjustment given their 

relevance to possible future climate impact 
studies as raised by key stakeholder groups 
(Table 9.4). 

 
Table 9.4: Variables for bias adjustment  

Variable 

Name 
Unit Description Relevance to impact studies 

pr mm/day 
daily mean of 

precipitation  

plays a crucial role in studying rainfall patterns, 

droughts, and wet spells 

tas °C 
daily mean of near 

surface air temperature 

essential factor in understanding and assessing 

climate conditions 

tasmax °C 
daily maximum of near 

surface air temperature 

providing insights into extreme heat events and 

temperature extremes 

tasmin °C 
daily minimum of near 

surface air temperature 

allowing for the analysis of cold spells and temperature 

variations 

hurs % 
daily mean of near 

surface relative humidity  

contributes to the understanding of moisture levels and 

atmospheric conditions 

sfcWind m/s 
daily mean of 10m wind 

speed 

important for studying wind patterns, gusts, and 

potential impacts on various sectors 

9.2.4 Gridded reference for bias 
adjustments 

To conduct bias adjustments, it is crucial to have 
gridded observations that cover Singapore and 
its surrounding area at a daily frequency and in 
spatial resolutions of 8km and 2km. However, it 
is challenging to find existing observation 
products that fully meet these requirements. As 
a result, additional efforts were undertaken to 
create suitable benchmark datasets for our 
study. 

Here we employed different approaches for 
different variables, as outlined in Table 9.5. For 
precipitation, we utilized station data and applied 
advanced spatial interpolation methods, 

specifically Kriging, to generate a gridded 
precipitation product. This allowed us to convert 
the point station data into a spatially distributed 
precipitation dataset, providing a more 
comprehensive representation of precipitation 
patterns over Singapore. For the variables of 
temperature (tas, tasmax, tasmin), relative 
humidity (hurs), and surface wind speed 
(sfcWind), we used the ERA5-RCMs as the 
gridded references. ERA5-RCM is the ERA5-
driven regional downscaling simulation using 
our own SINGV-RCM model (documented in the 
Chapter 6). By truncating the model outputs for 
the Singapore domain, we obtained gridded 
references that align with regional information 
provided by ERA5 reanalysis but focus on the 



 
 

spatial extent of Singapore. These ERA5-RCM-
based references were found to provide a 
realistic gridded representation of the selected 
variables over Singapore, exhibiting good 
agreement with the point station data across the 
region. 

It is important to note that while efforts were 
made to create the best available observation 
benchmarks, observations are not perfect. As 
new observation products become available in 
the future, the observation benchmarks can be 
updated to further improve the accuracy and 
representativeness of the gridded references.  

 
Table 9.5: Observation references 

Resolution Variable Source Period Additional remarks 

2km pr krig 1995-2014 using hourly rainfall from 28 stations 

8km pr krig 1995-2014 using hourly rainfall from 28 stations 

2km tas, tasmax, tasmin, 

hurs, sfcWind 

ERA5-

RCM 

1995-2014 using 2km daily output from ERA5-driven 

SINGV-RCM 

8km tas, tasmax, tasmin, 

hurs, sfcWind 

ERA5-

RCM 

1995-2014 2km daily ERA5-RCM remapped to 8km 

resolution 

9.3 Methods 

9.3.1 Bias Adjustment methods 

Bias adjustment is a common post-processing 
technique used in downscaling model 
applications. One may be aware of two basic 
“Delta” methods (e.g., Gleick, 1986, Hay et al., 
2000). The model-observation “Delta” method 
calculates the historical model-observation 
“mean” bias and adds this difference to the 
future model simulation to correct the “mean” 
bias in the future projection. The “Delta” method 
aims to reduce the systematic errors and bring 
the model closer to the observed reality. The 
other historical - future “Delta” method 
calculates the “mean” change in the simulations 
from the historical to future period, and adds this 
change to the historical observation. By 
construction, these “Delta” methods preserve 
the “mean” future change. They are 
straightforward approaches and can be useful 
when more sophisticated bias correction 
methods are not feasible due to data limitations 
or computational resources.  

Note that the delta method has its limitations. 
The delta method might not adequately capture 
biases in extreme events and high percentiles, 
given that the method assumes the model bias 
is constant across all quantiles. More advanced 
statistical methods like quantile mapping (QM) 
or distribution-based methods may be 
necessary to address more complex bias 
patterns and non-stationarities in the climate 
data. QM-based methods focus on correcting 
the cumulative distribution functions (CDFs) of 

climate variables, by acknowledging that the 
bias can vary across different parts of the 
distribution. The quantile mapping method 
corrects biases in both the mean and the shape 
of the distribution, making it more flexible in 
addressing complex bias patterns (Maraun, 
2016). 

The QM method itself has many developments 
over years and consists of a variety of 
implementation algorithms. By default, the 
conventional QM method (Pierce et al., 2015) 
does not preserve the future change (i.e., delta). 
The quantile delta mapping (QDM, Cannon et al. 
2015) involves identifying the differences in 
quantiles between the future projections and 
historical simulations and then applying these 
delta differences to adjust the entire CDF of the 
observations. Cannon et al. (2015) discussed 
and compared several quantile mapping 
techniques including conventional QM, 
detrended quantile mapping (DQM), and 
quantile delta mapping (QDM) in correcting 
precipitation outputs from GCMs based on a few 
precipitation extreme indices. The study pointed 
out that the QDM method shows advantages in 
its effectiveness of detrending the projection 
data through multiple quantiles, and capability of 
dealing with extreme model projections which 
may be beyond the scope of the historical record 
by using a superimposing algorithm.  

The basic delta method and the quantile 
mapping methods are both techniques used in 
statistical and climate modeling, particularly in 
the context of downscaling and bias correction. 
The choice between these methods depends on 



 
 

the specific characteristics of the data and the 
research objectives. They are often employed to 
bridge the gap between coarse-scale climate 
model projections and finer-scale regional or 
local projections. More extensive review of bias-
correction methods can be referred to Maraun 
(2016).  

 

9.3.2 V3 bias adjustment: ISIMIP3 method 

For the V3 study, we specifically sought a trend-
preserving method suitable for climate change 
studies. Various advanced methods have been 
developed for this purpose, and a 
comprehensive survey conducted by 
Casanueva et al. 2020 highlighted several 
popular bias adjustment methods. The study 
demonstrated that quantile trend-preserving 
methods, such as quantile delta mapping (QDM, 
Cannon et al. 2015), scaled distribution mapping 
(SDM, Switanek et al. 2017), and the bias 
adjustment method from the third phase of the 
Intersectoral Impact Model Intercomparison 
Project (ISIMIP3, Lange 2019), tend to preserve 
the raw signals better for different indices and 
variables considered.  

In line with these findings, for the V3 study, we 
have chosen to adopt the ISIMIP3 bias 
correction method. This method is designed to 
preserve the underlying trends and patterns in 
the data while effectively adjusting for biases, 
making them well-suited for our climate change 
analysis and ensuring the reliability and 
accuracy of our results.  

The ISIMIP community has made significant 
advancements in the development and 
refinement of bias adjustment methods over the 
years. Starting from the ISIMIP Fast Track 
method introduced by Hempel et al. in 2013, 
they have made subsequent updates in ISIMIP2 
(Frieler et al., 2017) and the most recent version, 
ISIMIP3 (Lange, 2019). These bias adjustment 
methods have been widely used in the climate 
impacts modeling community and have shown 
promising results. Researchers have employed 
ISIMIP2 in studies such as Peter et al. (2022), 
and ISIMIP3 has been utilized in the research 
conducted by Casanueva et al. (2020). These 
studies demonstrate the practical application 
and effectiveness of the ISIMIP bias adjustment 
methods in addressing biases in climate data for 
various modeling purposes. Furthermore, it is 
worth noting that the ISIMIP3 scripts are 
regularly updated to improve their functionality 

and performance. The updates from Version 1.0 
to the current Version 2.5 are publicly available 
(https://doi.org/10.5281/zenodo.4686991), 
providing researchers with the most up-to-date 
tools for implementing bias adjustment in their 
climate modeling studies. These updates ensure 
that the bias adjustment methods stay relevant 
and incorporate the latest advancements in the 
field. The continuous development and 
refinement of the ISIMIP bias adjustment 
methods reflect the commitment of the scientific 
community to enhance the accuracy and 
reliability of climate impact assessments and 
improve our understanding of climate change 
effects. 

One aspect of bias adjustment methods in 
climate modeling is to handle complex situations 
and address biases across various time scales 
and multivariate dependencies. Several studies 
have proposed advanced methods to handle 
such complexities and improve the performance 
of bias correction. For example, Mehrotra and 
Sharma (2016) developed a method to correct 
the duration of observed events using an auto-
regressive model, which can be particularly 
useful when simulations fail to capture the 
realistic duration of events.  

Additionally, Mehrotra and Sharma (2012) 
proposed recursive bias correction methods that 
can address biases across different time scales, 
ranging from daily to interannual, allowing for a 
comprehensive correction approach. In 
situations where there is a need to account for 
the multivariate dependence between variables, 
Cannon (2017) introduced multivariate methods 
that utilize lagged correlation and regression 
models. These approaches enable the 
correction of biases between variables such as 
precipitation (pr) and temperature (tas) at 
specific time scales, improving the overall fidelity 
of the simulation outputs. It's important to note 
that these advanced methods require sufficient 
high-quality data to robustly fit the parameters 
and achieve good performance. Overfitting can 
be a concern when data availability is limited, as 
it may lead to artifacts in the bias-corrected 
outcomes. Striking a balance between 
correcting biases and avoiding alterations to the 
fundamental physics represented in the raw 
simulations is crucial in order to maintain the 
integrity of the underlying climate models.  

In this context, the ISIMIP3 method offers a well-
balanced approach. It incorporates physical 



 
 

considerations while maintaining a reasonable 
level of complexity that can be adequately fitted 
to available data. Although it may not completely 
eliminate biases, ISIMIP3 provides sufficient 
bias reduction and adjusts future projections 
closer to the expected future conditions. By 
adopting the ISIMIP3 method, the V3 study can 
strike an appropriate balance between reducing 
biases and preserving the underlying physics of 
the raw simulations, allowing for more accurate 
and dependable climate impact assessments. 
While raw simulations can still offer valuable 
insights into the "Delta" changes, bias-adjusted 
simulations are particularly useful for obtaining 
accurate information regarding the absolute 
values, variability, and complete distribution of 
the climate variables. This ensures that the 
adjusted simulations provide reliable data for 
conducting climate impact studies.  

 

9.3.3 Bias adjustment configurations 

The ISIMIP3 bias adjustment method offers a 
comprehensive approach to correct biases in 
various quantiles across the distribution of 
variables. Compared to basic delta methods, 
ISIMIP3's quantile mapping approach provides 
a more detailed and nuanced correction by 
considering every quantile individually. ISIMIP3 
also allows for different fitting options, such as 
parametric fits or non-parametric fits, to ensure 
the best possible representation of the observed 
data. This flexibility enables the method to adapt 
to different variable characteristics and improve 
the accuracy of the bias-adjusted simulations. 
By adopting the configurations suggested by the 
ISIMIP3 paper (Table 9.6), our study ensures 
that the bias adjustments are carried out using 
recommended settings and approaches. This 
enhances the reliability and consistency of the 
bias-adjusted simulations for climate impact 
studies for Singapore.

 

Table 9.6: Bias adjustment configurations  

Variable Configurations 

pr python bias_adjustment.py --obs-hist=$FILE_OBS_HIST --sim-hist=$FILE_SIM_HIST --sim-
fut=$FILE_SIM_PROJ --sim-fut-ba=$FILE_OUTPUT --variable=$VARNAME --halfwin-upper-
bound-climatology 0 --lower-bound 0 --lower-threshold .1 --distribution gamma --trend-
preservation mixed --adjust-p-values True 

hurs python bias_adjustment.py --obs-hist=$FILE_OBS_HIST --sim-hist=$FILE_SIM_HIST --sim-
fut=$FILE_SIM_PROJ --sim-fut-ba=$FILE_OUTPUT --variable=$VARNAME --halfwin-upper-
bound-climatology 0 --lower-bound 0 --lower-threshold .01 --upper-bound 100 --upper-threshold 
99.99 --distribution beta --trend-preservation bounded --adjust-p-values True 

sfcWind python bias_adjustment.py --obs-hist=$FILE_OBS_HIST --sim-hist=$FILE_SIM_HIST --sim-
fut=$FILE_SIM_PROJ --sim-fut-ba=$FILE_OUTPUT --variable=$VARNAME --halfwin-upper-
bound-climatology 0 --lower-bound 0 --lower-threshold .01 --distribution weibull --trend-
preservation mixed --adjust-p-values True 

tas python bias_adjustment.py --obs-hist=$FILE_OBS_HIST --sim-hist=$FILE_SIM_HIST --sim-
fut=$FILE_SIM_PROJ --sim-fut-ba=$FILE_OUTPUT --variable=$VARNAME --halfwin-upper-
bound-climatology 0 --distribution normal --trend-preservation additive --detrend True 

tasrange python bias_adjustment.py --obs-hist=$FILE_OBS_HIST --sim-hist=$FILE_SIM_HIST --sim-
fut=$FILE_SIM_PROJ --sim-fut-ba=$FILE_OUTPUT --variable=$VARNAME --halfwin-upper-
bound-climatology 0 --lower-bound 0 --lower-threshold .01 --distribution rice --trend-
preservation mixed --adjust-p-values True 

tasskew python bias_adjustment.py --obs-hist=$FILE_OBS_HIST --sim-hist=$FILE_SIM_HIST --sim-
fut=$FILE_SIM_PROJ --sim-fut-ba=$FILE_OUTPUT --variable=$VARNAME --halfwin-upper-
bound-climatology 0 --lower-bound 0 --lower-threshold .0001 --upper-bound 1 --upper-threshold 
.9999 --distribution beta --trend-preservation bounded --adjust-p-values True 

tasmin tasmin = tas - tasskew x tasrange 

tasmax tasmax = tasrange + tasmin 

 



 
 

One important aspect of climate change studies 
is the preservation of the embedded global 
warming trends in the variables, particularly in 
temperature (tas). ISIMIP3 takes this into 
account and ensures that the trend present in 
the raw simulations is preserved during the bias 
correction process. This is crucial for capturing 
the long-term changes in climate variables and 
their impacts on various sectors. 

The 2-step procedure used by ISIMIP3 for bias 
adjustment of tasmax and tasmin variables 
ensures that the physical relationship between 
these variables is maintained during the 
correction process. In the first step, two 
intermediate variables, tasrange and tasskew, 
are derived. The tasrange represents the 
temperature range and is calculated as the 
difference between tasmax and tasmin 
(tasrange = tasmax - tasmin). Tasskew is a 
measure calculated as the ratio of the difference 
between tas and tasmin to tasrange (tasskew = 
(tas - tasmin) / tasrange). In the second step, 
bias adjustments are applied to tasrange and 
tasskew. Finally, using the bias-adjusted values 
of tasrange and tasskew, the bias-adjusted 
tasmin and tasmax are derived. The tasmin is 
calculated by subtracting the product of tasskew 
and tasrange from tas (tasmin = tas - tasskew x 
tasrange), and tasmax is obtained by adding 
tasrange to tasmin (tasmax = tasrange + 
tasmin). By incorporating this additional 
procedure, the ISIMIP3 method ensures that the 
physical consistency between tas, tasmax, and 
tasmin is preserved in the bias-adjusted 
simulations. This helps to maintain the 
appropriate temperature relationships and 
improves the overall realism of the corrected 
temperature variables. 

For precipitation (pr), ISIMIP3 includes specific 
treatments to address certain issues in the 
simulations. It implements a lower bound at 0 
mm/day to prevent negative (physically 
unrealistic) precipitation values. Additionally, a 
lower threshold at 0.1 mm/day is used to correct 
the drizzle issue commonly observed in 
simulations, where very low precipitation 
amounts are overestimated. These treatments 
improve the realism of the bias-adjusted 
precipitation simulations. 

The bias_adjustment.py script, along with the 
utility_function.py script, forms the main 
components for conducting bias adjustment in 
the ISIMIP3 method. Here's a breakdown of their 

functionalities: 1. bias_adjustment.py: This 
script serves as the main function for the bias 
adjustment process. 2. utility_function.py: This 
script contains various subroutines and utility 
functions that support the bias adjustment 
process. It includes functions for data handling, 
interpolation, statistical calculations, and other 
necessary operations. By utilizing these scripts 
and their functionalities, the bias adjustment 
process can be carried out effectively and 
efficiently. The scripts automate the correction 
procedure for each grid cell or station, ensuring 
consistency and coherence in the bias-corrected 
data across space and time.  

9.3.4 Combining 2km and 8km resolution 
bias-adjusted outputs  

We conducted bias adjustments for both the 
2km and 8km simulations in our study. The 2km 
simulations provide a detailed spatial pattern 
over Singapore and the West Maritime 
Continent, making them suitable for analyzing 
climate change on a local scale. However, it's 
important to note that the 2km simulations cover 
a shorter time period, specifically 1995-2014, 
2040-2059, and 2080-2099. To address the 
long-term trend, we also utilized the 8km bias-
corrected simulations, which cover a longer 
period from 1955 to 2014 for the historical period 
and from 2015 to 2099 for the future warming 
period. Although the 8km simulations give a 
coarser spatial resolution, they provide useful 
insights into the climate change over a broader 
time span. 

It is worth mentioning that the information and 
conclusions based on both the 2km and 8km 
simulations are consistent. We combined the 
results from both resolutions to address the 
long-term changes and capture the detailed 
spatial structure over Singapore. By 
incorporating strengths of the 2km and 8km 
simulations, we gained a comprehensive 
understanding of the climate change trends and 
their local implications. This approach ensures 
the robustness of our analysis and enhances the 
reliability of our findings. 

9.3.5 Advances from V2 to V3 

In the V2 study, bias adjustment was briefly 
addressed in Chapter 5 (Climate Change 
Projections, Annexe 5a: Description of the 
Quantile Matching technique applied to provide 
bias-corrected RCM outputs over Singapore). 
Here we highlight the advances in the V3 bias 



 
 

adjustment compared to the V2 study (Table 
9.7). These advancements have led to more 
accurate and reliable simulations, providing 

improved data for climate impact studies over 
Singapore. 

 
Table 9.7. Advances from V2 to V3 bias adjustment 

Advances in 
V3 

V2 V3 

higher 
resolution 

V2 study adjusted model output on 
the 12km resolution over singapore 
(8 grid cells) 

V3 study provided higher resolution bias-
adjusted outcome on the 8km (25 grid cells) and 
2 km resolution (over 300 grid cells) 

new observation 
reference 

V2 used stations across Singapore 
to aggregate into one CDF as the 
reference. 3 stations for 
temperature and humidity, one 
station for wind, and 28 stations for 
rainfall. There is no spatial 
information in the observation 
reference.  

V3 uses ERA5-RCM data to create gridded 
observational reference for temperature, 
humidity, and wind. V3 also uses 28 stations to 
create gridded rainfall reference. These efforts 
created gridded benchmarks for bias adjustment 
in the 8km and 2 km resolution.  

customised 
distributions 

V2 carried out the same 
configuration (i.e. multiplicative 
quantile mapping) to all the target 
variables.  

V3 applied customised configurations for 
individual variables. e.g., temperature using 
normal distribution, precipitation using Gamma 
distribution, relative humidity using beta 
distribution, and wind using Weibull distribution.  

trend-preserving 
V2 didn’t have treatments for the 
trend in the historical data and in 
the model simulations.  

V3 has additional treatment to preserve the 
trend.   

adjust rainfall 
frequency 

V2 didn’t have treatment for days 
with zero-rainfall and the low rainfall 
range.  

V3 applies a threshold at 0.1mm/day to adjust 
the rainfall frequency.  

flexible bins for 
CDF 

V2 used 1 percentile bin size to 
group data in the cumulative 
distribution function (CDF).  

V3 uses the default 0.5 percentile bin size for 
grouping. But it is adjusted automatically to 
make sure there are enough samples in each 
bin to handle zero-rain days.  

updated base 
period 

V2 used 1980-2009 30-year as the 
base period.  

V3 uses 1995-2014 20-year as the baseline, 
which is inline with the IPCC AR6 guidelines.  

 

9.4 Results: bias-adjustment for 
tas 
 

Historical gridded reference: The evaluation 
depicted in Figure 9.3 demonstrates a good 
agreement between the 12-month climatology of 
the ERA5-RCM and the observed temperature 
(tas) from five manned stations in Singapore 
(locations shown in Figure 9.3a). This 
agreement indicates that the ERA5-RCM 
simulations can serve as a reasonably realistic 
gridded reference for temperature (tas) in 
Singapore for the bias correction process.  

Bias-adjusted historical climatology: Figure 
9.4 illustrates the historical surface air 
temperature (tas) over Singapore, showing 
temperature peaks typically occurring around 
May. While the models are generally able to 
capture the seasonal cycle, they tend to 
overestimate the temperature by approximately 
1 degree Celsius. After applying the bias 
adjustment to the models, the corrected tas align 
much more closely with the observation 
reference, indicating a successful correction of 
the overestimation bias. The bias-adjusted 
simulations provide a more accurate 
representation of the observed temperature 
patterns over Singapore.

 



 

 
Figure 9.3. (a) map of manned station in Singapore. (b) 12-month climatology of tas in the historical period (1995-2014) 
from 5 manned stations (dotted) and from 2km-resolution ERA5-RCM gridcells across Singapaore (black is the gridcell 
mean) 
 

Bias-adjusted future climatology: The models 
consistently exhibit a tendency to overestimate 
the surface air temperature by approximately 1 
degree Celsius, both in the historical and future 
periods. After applying the bias adjustment 
based on the historical reference, the future tas 
projections are tuned down, bringing them into a 
more realistic range and better align with 
expectations based on the observational 
baseline. This bias adjustment helps to improve 
the accuracy of the future tas simulations. Figure 
9.5 provides visual evidence of this 
improvement in the bias-adjusted future tas 
projections. 
 
Future change largely preserved after bias 
adjustments: Figure 9.6 illustrates the 
projected changes in surface air temperature 
(tas) over Singapore. The results indicate a 
range of warming levels across models, ranging 
from approximately 2 to 5 degrees Celsius. On 
average, the models project a mean warming of 
around 4 degrees Celsius, representing a 15% 
increase in temperature. It is worth noting that 
these warming levels are consistent across 
seasons, indicating a relatively uniform 
temperature increase throughout the year. 
The comparison between the bias-adjusted 
simulations and the original projections 
demonstrates that the warming signals are 
largely preserved after the bias adjustment 

process. This indicates that the adjustments 
successfully correct the systematic biases 
without significantly altering the projected 
changes in tas. The preserved warming signals 
in the bias-adjusted simulations provide a more 
reliable representation of the expected future 
climate conditions over Singapore. 
 
Climate change patterns largely preserved 
by bias adjustments: Figure 9.7 illustrates the 
spatial pattern of projected warming signals 
across Singapore for both raw and bias-adjusted 
simulations from the UKESM1-0-LL model. It is 
evident that there are spatial differences in the 
projected warming, with northern Singapore 
exhibiting a larger warming signal compared to 
the southern parts of Singapore, which are 
closer to the open ocean.  

The bias adjustment process aims to preserve 
the spatial features of the warming signals while 
reducing systematic biases in the model 
simulations. The comparison for UKESM1-0-LL 
shows that both raw and bias-adjusted 
simulations keep consistency in the magnitude 
of the warming signal. Furthermore, the bias 
adjustment successfully preserves the spatial 
differences in the warming patterns. The larger 
warming signal observed in northern Singapore, 
as seen in the raw simulations, is also 
maintained in the bias-adjusted simulations.



 

 
Figure 9.4: Singapore domain-averaged tas at the 2km resolution in the historical period (1995-2014). a. observation 
reference (ERA5-RCM) and raw simulations. b. similar to a, but plotting bias-adjusted simulations.  

 

 
Figure 9.5: Singapore domain-averaged tas in the SSP585 future period (2080-2099) at the 2km resolution. a. raw 
simulations. b. bias-adjusted simulations.

 

 
Figure 9.6: Changes in the Singapore domain-averaged tas from the historical period (1995-2014) to the future period 
(2080-2099) under the SSP585 scenario at the 2km resolution. a. raw simulations. b. bias-adjusted simulations.  



 

 
Figure 9.7: 2km resolution Singapore tas change in July from the historical period to the future period under the SSP585 
scenario in the UKESM1-0-LL. a. raw simulations. b. bias-adjusted simulations. 
 

Bias-adjusted distribution: Figure 9.8 
presents the distributions of daily tas (surface air 
temperature) for both raw and bias-adjusted 
simulations from individual models, along with 
the reference distribution from ERA5-RCM. It is 
shown that the overall distribution of daily tas 
follows a normal distribution. 

The bias adjustment process successfully brings 
the model simulations into better agreement with 
the observed distribution. Furthermore, when 
considering the effect of warming on tas, models 

that initially overestimate the warming are tuned 
down during the bias adjustment process. This 
can be observed in Figure 9.8b. This 
downshifted distribution reflects the adjustment 
made to bring the models' projected warming to 
a more realistic range. Overall, the bias 
adjustment method ensures that the bias-
adjusted simulations provide a more accurate 
representation of the expected distribution of 
daily tas, considering both historical 
observations and projected future changes.

 
Figure 9.8: (a) July CDF of tas at gridcells across Singapore for the historical period (1995-2014). Here the ref_h is ERA5-
RCM, model_h_raw are raw simulations, and model_h_adjusted are adjusted models. (b) July CDF for the future period 
(2080-2099) under the SSP585 scenario. 
 

Trend in annual mean tas: Figure 9.9 
highlights the climate change signal in tas 
(surface air temperature) and the performance 
of the bias-adjusted simulations in capturing this 
signal. It demonstrates that the bias-adjusted tas 
successfully preserves the warming trend 
associated with climate change. 

In the historical period, the time series of tas in 
the models are adjusted to match the mean of 
the observed data. This adjustment ensures that 
the model simulations are consistent with the 

observed mean temperature, providing a more 
accurate representation of historical climate 
conditions. Furthermore, the variability range of 
the adjusted simulations in the historical period 
is similar to that of the observations. This 
suggests that the bias adjustment process not 
only corrects for biases in the mean tas but also 
addresses discrepancies in the variability, 
allowing the adjusted simulations to capture the 
observed range of temperature variations.  



 

Looking into the future period, the bias-adjusted 
time series provide a more realistic projection of 
tas. The adjusted simulations not only capture 
the adjusted mean temperature but also 
maintain a realistic range of variability. Overall, 
the bias-adjusted tas preserves the important 
climate change signal by capturing the warming 

trend and matches the mean and variability of 
the observations in the historical period. In the 
future period, the adjusted simulations offer a 
more realistic projection of tas, ensuring that the 
bias adjustment process enhances the accuracy 
and reliability of the model outputs.

 

 
Figure 9.9: (a) 8km resolution Singapore domain-averaged tas in the historical period. (b) tas in the future period under the 
SSP585 scenario. Observation reference is in black (ERA5-RCM). Raw simulations are in blue, and bias-adjusted 
simulations are in red. 
 

9.5 Results: bias-adjustment for 
tasmax 
 
Historical gridded reference: Here we use 
ERA5-RCM as the historical reference. 
Comparison showed that the 12-month 

climatology of tasmax observations from 5 
manned stations in Singapore are within the 
range of the climatology of tasmax at each 
gridcells from the ERA5-RCM (Figure 9.10). It 
indicates that ERA5-RCM can provide a 
reasonably realistic gridded reference for 
tasmax.   

 
Figure 9.10. (a) Map of manned stations in Singapore. (b) 12-month climatology of tasmax from 5 manned stations (dotted) 
and from ERA5-RCM gridcells across Singapaore (black is the gridcell mean). 

 
Bias-adjusted historical climatology: 
Historical tasmax over Singapore shows 
temperature peaks around March-April-May 
(Figure 9.11). Models are able to simulate the 

seasonal cycle but tend to overestimate the tas 
for ~1°C. Bias-adjusted simulations match with 
the observation reference (Figure 9.11).  



 

Bias-adjusted future climatology: Models 
tend to overestimate the temperature in both 
historical and future period. Adjusted tasmax is 
tuned down to provide a more realistic future 
projection (Figure 9.12). 
 

Climate change signal preserved by bias 
adjustments: As to the change, models project 
warming ranging from ~2.5 to ~5.5°C (Figure 
9.13) with the mean around 4°C (~13% 
increase). The warming levels are similar across 
seasons. Bias adjustments largely preserve the 
warming.

 
 

 
Figure 9.11: Singapore domain-averaged tasmax in the historical period (1995-2014). (a) observation reference (ERA5-
RCM) and raw simulations. (b) similar to a, but plotting bias-adjusted simulations. 
 
 

 
Figure 9.12: Singapore domain-averaged tasmax in the SSP585 future period (2080-2099) at a 2km resolution. a. raw 
simulations. b. bias-adjusted simulations. 



 

 

Figure 9.13: Changes in the Singapore domain-averaged tasmax from the historical period (1995-2014) to the future period 
(2080-2099) under the SSP585 scenario. a. raw simulations. b. bias-adjusted simulations. 

Climate change patterns preserved by bias 
adjustments: Similar to the warming pattern of 
tas, future change of tasmax in both raw and 
adjusted simulations show a larger warming in 
the northern Singapore compared to the 
southern Singapore (Figure 9.14).  

Bias-adjusted distribution: Distributions of 
modelled tasmax are adjusted to the reference 
distribution (ERA5-RCM) for the historical period 
(Figure 9.15). Under warming, distributions of 
tasmax are tuned down slightly.  

Trend in annual mean tasmax: Here we show 
time series of tasmax in models are adjusted to 
match observation mean in the historical period 
(Figure 9.16). Also the variability range of the 
adjusted simulations is similar to the 
observation. In the future period, adjusted time 
series provide more realistic projection with 
adjusted mean and variability. Here bias 
adjustment preserved the warming trend in 
tasmax. 

 

 
Figure 9.14: 2km resolution Singapore tas change in July from the historical period to the future period under the SSP585 
scenario. a. raw simulations. b. bias-adjusted simulations.

 



 

 
Figure 9.15: a. July CDF of tasmax at gridcells across Singapore for the historical period (1995-2014). Reference is the 
ERA5-RCM. b. July CDF for the future period (2080-2099) under the SSP585 scenario.

  

 
Figure 9.16: 8km resolution Singapore domain-averaged tasmax in the historical period (a) and in the future period (b) 
under the SSP585 scenario. Observation reference (ERA5-RCM) is in black. Raw simulations are in blue, and bias-adjusted 
simulations are in red. 
 
 

9.6 Results: bias-adjustment for 
tasmin 
 
Historical gridded reference: Here we use 
ERA5-RCM as the historical reference. We 
compared the 12-month climatology of the 
ERA5-RCM with tasmin observations from 5 
manned stations in Singapore, and the results 
(Figure 9.17) show that ERA5-RCM can provide 
a reasonably realistic gridded reference. 
 
Bias-adjusted historical climatology: The 
models exhibit similar overestimated biases for 
tasmin. After applying bias-adjustment 
techniques, the simulations better align with the 

observational reference, as shown in Figure 
9.18. 
 
Bias-adjusted future climatology: Models 
tend to slightly overestimate the tasmin in both 
historical and future period. Adjusted tasmin is 
tuned down to provide a more realistic future 
projection (Figure 9.19). 
 
Climate change preserved by bias 
adjustments: As to the change of tasmin 
(Figure 9.20), models project warming ranging 
from ~2 to ~5°C with the mean warming around 
4°C (~15% increase). The warming levels are 
similar across seasons. Bias adjustment can 
preserve the change signal. 
   
 



 

 
Figure 9.17. a. Map of manned stations in Singapore. b. 12-month climatology of tasmin in the historical period (1995-2014) 
from 5 manned stations (dotted) and from ERA5-RCM gridcells across Singapaore (black is the gridcell mean).  

 

 
Figure 9.18: Singapore domain-averaged tasmin in the historical period (1995-2014) at a 2km resolution. a. observation 
reference (ERA5-RCM) and raw simulations. b. similar to a, but plotting bias-adjusted simulations.   
 

 

Figure 9.19: Singapore domain-averaged tasmin in the future period (2080-2099) under the SSP585 scenario 
at a 2km resolution. a. raw simulations. b. bias-adjusted simulations. 



 

 

Figure 9.20: Changes in the Singapore domain-averaged tasmin from the historical period (1995-2014) to the future period 
(2080-2099) under the SSP585 scenario at a 2km resolution. a. raw simulations. b. bias-adjusted simulations. 

   

Climate change patterns preserved by bias 
adjustments: Similar to the warming pattern of 
tas, future change of tasmin (Figure 9.21) in both 
raw and adjusted simulations show a larger 
warming in the northern Singapore compared to 
the southern Singapore.   
 
Bias-adjusted distribution: Distributions of 
modeled tasmin are adjusted to the reference 
distribution (ERA5-RCM) for the historical period 
(Figure 9.22). Under warming, distributions of 

tasmin are tuned down to a more reasonable 
range of warming.  
 
Trend in annual mean tasmin: Here we show 
time series of tasmin in models are adjusted to 
match observation mean in the historical period 
(Figure 9.23). Also the variability range of the 
adjusted simulations is similar to the 
observation. In the future period, adjusted time 
series provide more realistic projection with 
adjusted mean and variability. Bias adjustment 
preserves the warming trend.  

 

 
Figure 9.21: 2km resolution Singapore tasmin change in July from the historical period (1995-2014) to the future 
period (2080-2099) under the SSP585 scenario simulated by UKESM1-0-LL. a. raw simulations. b. bias-
adjusted simulations.  



 

 

Figure 9.22: a. July CDF of tasmin at gridcells across Singapore for the historical period (1995-2014). b. July CDF for the 
future period (2080-2099) under the SSP585 scenario. 

 

 

Figure 9.23: a. 8km resolution Singapore domain-averaged tasmin in the historical period. b. tasmin in the future 
period under the SSP585 scenario. Observation reference is in black (ERA5-RCM). Raw simulations are in 
blue, and bias-adjusted simulations are in red. 
 

9.7 Results: bias-adjustment for 
pr 
 
Historical gridded reference: The 
Meteorological Service Singapore (MSS) has 
established a network of 93 automatic weather 
stations (AWS) across Singapore since 2009. 
However, for long-term rainfall records, there 
are only around 28 rain-gauge stations available 
dating back to 1980. Figure 9.24 illustrates the 
locations of these rain gauges, revealing a 
limited spatial coverage particularly in western 
and eastern Singapore. 

To overcome this spatial limitation, a gridded 
daily rainfall dataset was created using 

geostatistical interpolation techniques. The 
Python package PyKrige, as described by 
Murphy et al. (2020), was utilized for this 
purpose. The interpolation was performed on 
daily rainfall data aggregated from the hourly 
data collected at each station. Only days with at 
least one non-zero rainfall value were 
considered, while days with no rainfall were 
assigned a zero value. The geostatistical 
interpolation employed the concept of Ordinary 
Kriging, which is a spatial interpolation method 
based on variograms. A spherical 
semivariogram model was chosen to capture the 
spatial autocorrelation and variability of rainfall 
as a function of the separation distance between 
each pair of stations. The selection of the 
spherical model was based on the work of 



 

Muhammad Ali and Othman (2017), who 
evaluated various semivariogram models and 
found the spherical model to be the most 
appropriate for the Kelang River basin in 
Peninsular Malaysia. By applying geostatistical 
interpolation using PyKrige and the spherical 
semivariogram model, the gridded daily rainfall 
dataset was generated, providing a more 
comprehensive representation of rainfall across 
Singapore. This dataset helps address the 
limited spatial coverage of rain-gauge stations 
and allows for a more accurate analysis and 
understanding of rainfall patterns and variability 
in the region. 

The daily rainfall observations from 1980 to 
2021 were subjected to spatial interpolation 
using kriging techniques, specifically applied to 
the SINGV-RCM 2-km and 8-km grid. This 

interpolation process resulted in a gridded 
representation of rainfall station data. For this 
study, the kriged rainfall observations for the 
period 1995-2014 were chosen as the reference 
dataset. 

Comparisons between the kriged rainfall and 
individual rain gauges revealed good agreement 
in terms of climatological patterns. This 
agreement suggests that the kriged precipitation 
data can serve as a suitable gridded observation 
reference. By utilizing kriging interpolation, the 
study was able to fill in spatial gaps and provide 
a more comprehensive representation of rainfall 
across the region. Using the kriged rainfall 
observations as the reference, the study can 
effectively assess and analyze the model 
performance in capturing the spatial and 
temporal characteristics of precipitation.

 

 

Figure 9.24: a. Map of 28 rain gauge stations in Singapore. b. 12-month climatology of pr in the historical period 
(1995-2014) from 28 pr stations (dotted) and from 2km-resolution krig gridcells across Singapore (black is the 
gridcell mean). 

 
Bias-adjusted historical climatology: 
Historical rainfall over Singapore shows a 
seasonal transition between weather types 
(Figure 9.25). It starts from a wet winter due to 
the Northeast monsoon, followed by another wet 
April due to frequent squalls moving across 
Singapore. Then comes the dry summer and 
autumn due to Southwest monsoon. Here five 
SINGV RCM models show varying wet/dry 
biases compared to the observation reference. 
In particular, models appear to underestimate 
the January-March rainfall. Bias-adjusted 
simulations match closely with the reference 
(Figure 9.25).  

Bias-adjusted future climatology: Here we 
show that (Figure 9.26) raw future rainfall is also 

low in Jan-Feb (systematic bias, similar to the 
historical rainfall, see Figure 9.25). After bias-
adjustment, the Jan-Feb rainfall is more close to 
the magnitude of the observation reference.  

Climate change overall preserved by bias 
adjustments: After bias adjustments, models 
tend to agree that SG may become drier (-
3mm/day) by 25% (Figure 9.27) in Jan-Feb and 
July-Sept, while wetter (+2mm/day) by 20% in 
May and Nov-Dec. One may notice that the 
future rainfall changes are tuned down slightly 
after bias adjustments, unlike the changes in the 
surface air temperature. It is heavily due to the 
nonlinearity and skewed distribution in rainfall 
(Figure 9.29) compared to the relatively normal 
distribution in temperature (Figure 9.8). For 



 

temperature, the biases are mainly in the mean 
instead of the shape of the distribution. 
However, the biases in rainfall are embedded in 
the whole distribution.  

In the process of recalibrating historical and 
projected precipitation within these skewed 
distributions, the overall direction of change 
remains largely intact. However, there is 
potential for a minor adjustment in the 

magnitude of mean future changes. It is crucial 
to also recognize that raw future changes, when 
derived from biased simulations, do not 
inherently represent accurate projections. 
Consequently, changes after the bias 
adjustments could lead to alterations that are 
more aligned with realistic expectations. This 
bias adjustment practice does not alter the 
understanding and main conclusions as to the 
future changes. 

 

Figure 9.25: Singapore domain-averaged pr in the historical period (1995-2014) at a 2km resolution. a. 
observation reference (station krig pr) and raw simulations. b. similar to a, but plotting bias-adjusted simulations.  
 

 

Figure 9.26: Singapore domain-averaged pr in the future period (2080-2099) under the SSP585 scenario. a. raw 
simulations. b. bias-adjusted simulations.   



 

 

Figure 9.27: Percentage changes in the Singapore domain-averaged pr from the historical period (1995-2014) to the future 
period (2080-2099) under the SSP585 scenario at a 2km resolution. a. raw simulations. b. bias-adjusted simulations.  
  

Climate change patterns preserved by bias 
adjustments: Singapore is controlled by 
southwest monsoon duing the JJAS season. 
Here future changes in pr projected by 
ACCESS-CM2 (Figure 9.28) in both raw and 
adjusted simulations show a larger reduction of 
rainfall in the south-western Singapore 
compared to the north-eastern Singapore.  Note 
that bias adjustment still preserve the spatial 
feature of the change even though the change 
magnitude is reduced after bias adjustment.  

Bias-adjusted distribution: Distributions of 
modeled pr (overestimated as to the reference) 

are adjusted to the reference distribution (station 
kriged) for the historical period (Figure 9.29). 
Under warming, distributions of overestimated 
July pr are tuned down. 

Trend in annual mean pr: Here we show time 
series of rainfall in models are adjusted to match 
observation mean in the historical period (Figure 
9.30). Also the variability range of the 
simulations is reduced to match the observation. 
In the future period, adjusted time series provide 
more realistic projection with adjusted mean and 
variability.   

 

 

Figure 9.28: 2km resolution Singapore pr change in July from the historical period (1995-2014) to the future 
period (2080-2099) under the SSP585 scenario. a. raw simulations. b. bias-adjusted simulations.  



 

 

Figure 9.29: a. July CDF of pr at 2km resolution gridcells across Singapore for the historical period (1995-2014). 
b. July CDF for the future period (2080-2099) under the SSP585 scenario. 
 

 

Figure 9.30: a. 8km resolution Singapore domain-averaged annual mean pr in the historical period. b. pr in the 
future period under the SSP585 scenario. Observation reference is in black (station krig pr). Raw simulations 
are in blue, and bias-adjusted simulations are in red.  

 
 

9.8 Results: bias-adjustment for 
hurs 
 

Historical gridded reference: Here we use 
ERA5-RCM as the historical reference. We 
compared the 12-month climatology of the 
ERA5-RCM with observations from 5 manned 
stations in Singapore, and the results (Figure 
9.31) show that ERA5-RCM can provide a 
reasonably realistic gridded reference for hurs.   

Bias-adjusted historical climatology: Models 
tend to underestimate the hurs in Jan-April, and 
bias-adjusted simulations match with the 
reference (Figure 9.32).  

Bias-adjusted future climatology: Models 
tend to underestimate the magnitude in the 
future period during Jan- April. Adjusted 
simulations tune up the magnitude which 
becomes more realistic (Figure 9.33). Moreover, 
the seasonal cycle is adjusted to match better 
with the observation reference.  

Climate change largely preserved by bias 
adjustments: Models tend to project reduction 
of the hurs (-2.5% in value as in Figure 9.34,  -
3% in percentage changes) across all seasons 
except in May. Bias adjustments largely 
preserve the change. 



 

 

 
Figure 9.31. a. Map of manned stations in Singapore. b. 12-month climatology of hurs in the historical period 
(1995-2014) from 5 manned stations (dotted) and from ERA5-RCM gridcells across Singapore (black is the 
gridcell mean) at a 2km resolution.  
 

 

Figure 9.32: Singapore domain-averaged hurs in the historical period (1995-2014) at a 2km resolution. a. 
observation reference (ERA5-RCM) and raw simulations. b. similar to a, but plotting bias-adjusted simulations.  
  

 

Figure 9.33: Singapore domain-averaged hurs in the future period (2080-2099) under the SSP585 scenario at a 
2km resolution. a. raw simulations. b. bias-adjusted simulations.   
 



 

 

Figure 9.34: Changes in the Singapore domain-averaged hurs from the historical period (1995-2014) to the 
future period (2080-2099) under the SSP585 scenario at a 2km resolution. a. raw simulations. b. bias-adjusted 
simulations.   
 

Climate change patterns preserved by bias 
adjustments: Here future change of hurs 
projected by UKESM1-0-LL (Figure 9.35) in both 
raw and adjusted simulations show a larger 
reduction of hurs in the north-western Singapore 
compared to the south-eastern Singapore.  Note 
that bias adjustments preserve the spatial 
feature of the change.  

Bias-adjusted distribution: Distributions of 
modeled hurs are adjusted to the reference 
distribution (ERA5-RCM) for the historical period 
(Figure 9.36). Under warming, distributions of 

overestimated and underestimated July hurs are 
all adjusted accordingly. 

Trend in annual mean hurs: Here we show 
time series of hurs in models are adjusted up to 
match observation mean in the historical period 
(Figure 9.37). Also the variability range of 
simulations is reduced to match the observation. 
In the future period, adjusted time series provide 
more realistic projection with adjusted mean and 
variability. Bias adjustment also preserve the 
trend. 

 

 

Figure 9.35: UKESM1-0-LL simulated 2km resolution Singapore July hurs change from the historical period 
(1995-2014) to the future period (2080-2099) under the SSP585 scenario. a. raw simulation. b. bias-adjusted 
simulations.  

 



 

 
Figure 9.36: a. July CDF of hurs at 2km resolution gridcells across Singapore for the historical period (1995-
2014). The reference is the station kriged rainfall. b. July CDF for the future period (2080-2099) under the 
SSP585 scenario. 

 
Figure 9.37: a. 8km resolution Singapore domain-averaged hurs in the historical period. b. hurs in the future 
period under the SSP585 scenario. Observation reference is in black. Raw simulations are in blue, and bias-
adjusted simulations are in red. 
 

9.9 Results: bias-adjustment for 
sfcWind 
 

Historical gridded reference: We use the 
ERA5-RCM as the observation reference. We 
compared sfcWind climatology of all gridcells 
over Singapore from ERA5-RCM with 21 station 
data. Results (Figure 9.38) show that station 
sfcWind are largely within/overlap with the 
ERA5-RCM range, which suggests that ERA5-
RCM data is a suitable product to provide a 
gridded estimate for sfcWind. 

Bias-adjusted historical climatology: Surface 
wind speed over Singapore shows stronger wind 
during the monsoon seasons (Northeast and 
Southwest Monsoon season) and weaker wind 

during the intermonsoon transition period 
(Figure 9.39). Models overall overestimate the 
magnitude of sfcWind during the winter 
monsoon season. Bias-adjusted simulations 
match with the observation reference. 

Bias-adjusted future climatology: Models 
overestimate the sfcWind in the winter monsoon 
season. Here adjusted future projection of 
sfcWind is tuned down for winter season (Figure 
9.40).  

Climate change preserved by bias 
adjustments: As to the future change, models 
project increase in the sfcWind (~0.5m/s in 
Figure 9. 41, or ~12% change) during the 
monsoon seasons (DJFM, and JJAS) except in 
the intermonsoon seasons (May, and Nov).



 

 

Figure.9.38 a. map of 21 stations on sfcWind. b. 12-month climatology in the historical period of station sfcWind 
(dotted) versus gridcells from ERA5-RCM (black is the gridcell mean) over Singapore. 
 

 

Figure 9.39: 12-month climatology of Singapore domain-averaged sfcWind in the historical period (1995-2014) 
at a 2km resolution. a. observation reference (ERA5-RCM, black) and raw simulations. b. similar to a, but plotting 
bias-adjusted simulations.   
 

 

Figure 9.40: Singapore domain-averaged sfcWind in the future period (2080-2099) under the SSP585. a. raw 
simulations. b. bias-adjusted simulations.  



 

 
Figure 9.41: Percentage changes in the Singapore domain-averaged sfcWind from the historical period (1995-
2014) to the future period (2080-2099) under the SSP585 scenario. a. raw simulations. b. bias-adjusted 
simulations.  
 

Climate change patterns preserved by bias 
adjustments: Future change of sfcWind shows 
a larger increase at the coastal area of 
Singapore (Figure 9.42). Bias adjustment largely 
preserves the future change.  

Bias-adjusted distribution: Distributions of 
modeled sfcWind are adjusted to the reference 
distribution (ERA5-RCM) for the historical period 
(Figure 9.43). Under warming, distributions of 
overestimated and underestimated July sfcWind 
are all adjusted accordingly. 

Trend in annual mean sfcWind: Here we show 
the annual mean sfcWind in models are reduced 
to match observation mean in the historical 
period (Figure 9.44). Also the variability range of 
the adjusted simulations is similar to the 
observation. In the future period, adjusted time 
series provide more realistic projection with 
adjusted mean and variability. Bias adjustment 
also preserves the trend.  

 
Figure 9.42: UKESM1-0-LL simulated 2km resolution Singapore July sfcWind change from the historical period 
to the future period under the SSP585 scenario. a. raw simulation. b. bias-adjusted simulations. 

 



 

 

Figure 9.43: a. July CDF of sfcWind at 2km resolution gridcells across Singapore for the historical period (1995-
2014). The reference is ERA5-RCM. b. July CDF for the future period (2080-2099) under the SSP585 scenario. 

 

 

Figure 9.44: a. 8km resolution Singapore domain-averaged sfcWind in the historical period. sfcWind in the future 
period under the SSP585 scenario. Observation reference is in black. Raw simulations are in blue, and bias-
adjusted simulations are in red. 
 

9.10 Results: bias-adjusted 
climate impact indices 
 

9.10.1 Derived extreme indices 
Table 9.8 showcases the extreme indices 
calculated for impact studies based on essential 
variables, such as daily precipitation, maximum 
temperature, and minimum temperature.  

The application of bias adjustments to those 
base variables leads to a substantial reduction 
in biases within the derived indices. This 
demonstrates that the bias adjustments not only 
enhance the accuracy and reliability of the raw 
model output but also ensure that the resulting 

indices accurately represent the desired 
characteristics of extreme events.  

By mitigating biases in the derived indices, we 
can now have greater confidence in the validity 
and usefulness of the data for understanding 
and addressing extreme climate events. This 
improvement in data quality is of great 
importance in various fields, from climate 
research to policy-making and disaster 
preparedness. 

Here we will show two examples of the derived 
frequency indices. One is the CWD (consecutive 
wet days), the other one is the R20mm (Number 
of very heavy precipitation days when 
pr>=20mm).



 

Table 9.8: Derived indices after the bias correction  

Variables Unit Base variable Description 

RX1day mm pr Maximum 1-day precipitation  

RX5day mm pr Maximum 5-day precipitation 

PRCPTOT mm pr Total precipitation during Wet Days  

R10mm days pr Number of heavy precipitation days (pr>=10mm) 

R20mm days pr Number of very heavy precipitation days (pr>=20mm) 

CWD days pr Maximum consecutive wet days (pr>=1mm) 

CDD days pr Maximum consecutive dry days (pr<1mm) 

TXx °C tasmax Maximum daily maximum temperature 

TXn °C tasmax Minimum daily maximum temperature 

TNx °C tasmin Maximum daily minimum temperature 

TNn °C tasmin Minimum daily minimum temperature 

9.10.2 CWD and its future change 
Let's consider the example of the consecutive 
wet days (CWD) index. It measures the 
maximum number of consecutive days with 
precipitation greater than or equal to 1mm, is an 
important measure of rainfall frequency. In 
Singapore, the CWD exhibits a seasonal cycle, 
with longer durations of wet days observed in 
April and during the winter monsoon season, 
and shorter durations during the dry (summer 
monsoon) season. This seasonal pattern 
generally aligns with the monthly mean rainfall 
climatology. 

During the historical period, the SINGV-RCMs 
tend to underestimate the duration of wet days 
compared to the observation reference, with an 
average difference of around 3 days 
(observation reference: ~7 days). It is important 
to note that direct bias correction for the CWD 
index was not performed in this study, hence a 
perfect match is not expected. However, the 
bias-adjusted model simulations exhibit a much 

closer agreement with the observations (Figure 
9.45), indicating that the bias adjustments have 
significantly improved the accuracy of the model 
outputs for the CWD index.  

The close agreement between the bias-adjusted 
model simulations and the observation 
reference for the CWD index suggests that the 
bias correction approach employed in this study 
has effectively addressed the systematic biases 
in the SINGV-RCMs, leading to more reliable 
and realistic estimates of the duration of wet 
days. 

As to the future change, raw model simulations 
also underestimate the CWD (Figure 9.46). And 
bias-adjusted simulations tuned up to show a 
more realistic magnitude of CWD for the future 
period.  

The raw CWD shows a reduction (i.e., a shorter 
duration of wet days) under warming (Figure 
9.47). After bias adjustments, the CWD values 
are tuned up, and the reduction range is also 
enlarged.



 

 

Figure 9.45: Singapore domain-averaged CWD in the historical period (1995-2014). a. observation reference 
(station krig pr) and raw simulations. b. similar to a, but plotting bias-adjusted simulations.  Note that the value 
of CWD represents the wet days starting from individual month instead of truncated to the given month. 
 

 

Figure 9.46: Singapore domain-averaged CWD in the SSP585 future period (2080-2099). a. raw simulations. b. 
bias-adjusted simulations.   

 
Figure 9.47: Changes in the Singapore domain-averaged CWD from the historical period (1995-2014) to the 
future period (2080-2099) under the SSP585 scenario. a. raw simulations. b. bias-adjusted simulations. 



 

 

9.10.3 R20mm and its future changes 
Here we show the other example of the 
frequency-based extreme index R20mm 
(Number of very heavy precipitation days 
(pr>=20mm), in days in unit). The dry season 
(JJAS) shows fewer days of the R20mm, while 
the wet season (NDJ and April) shows more 
days of R20mm. It overall follows the seasonal 
cycle of the mean rainfall.  

Figure 9.48 shows that models tend to 
underestimate the R20mm in JFMA, but 
overestimate the R20mm in JJAS. The bias-
adjusted simulations match R20mm with the 
observation very well. Note that the R20mm was 

not directly bias-adjusted but derived from the 
bias-adjusted pr. It indicates the bias adjustment 
in base variables like pr are successful and 
useful for impact studies.  

Figure 9.49 showed the future R20mm under the 
SSP585 scenario. Future simulations tend to 
have similar biases as the historical period. After 
bias adjustments, JFMA season R20mm are 
tuned down, and the JJAS season R20mm are 
tuned down. 

Figure 9.50 showed the future change of 
R20mm. The reduction in heavy rainfall days are 
mainly in the  JJAS season. After the bias 
adjustment, the R20mm in the JJAS season are 
tuned down and the changes are also reduced. 

 
Figure 9.48: Singapore domain-averaged R20mm in the historical period (1995-2014) at a 2km resolution. a. 
observation reference (station krig pr) and raw simulations. b. similar to a, but plotting bias-adjusted 
simulations.  
 

 

Figure 9.49: Singapore domain-averaged R20mm in the future period (2080-2099) under the SSP585 scenario. 
a. raw simulations. b. bias-adjusted simulations.   



 

 

Figure 9.50: Percentage changes in the Singapore domain-averaged R20mm from the historical period (1995-
2014) to the future period (2080-2099) under the SSP585 scenario at a 8km resolution. a. raw simulations. b. 
bias-adjusted simulations. 
 
  

9.11 Evaluations using pseudo 
reality experiments 
We showed in above results that bias 
adjustments are very useful to remove the 
systematic biases in models, provide more 
realistic simulations, and largely preserve the 
change and long-term trend. We have to 
acknowledge that bias-adjusted projections still 
have inevitable uncertainties given that we do 
not know what the actual future will look like in 
the reality. To provide more confidence, here we 
conduct an evaluation using a pseudo reality 
experiment. The main objective of this 
experiment was to assess the performance of 
the bias adjustment method by comparing the 
bias-adjusted simulations with a designated 
reference model that represents an alternative 
plausible reality. 

The experiment involved selecting one CMIP6 
model, specifically MPI-ESM1-2-HR, as the 
reference model, while the other four CMIP6 
models were treated as test models (Table 9.9). 
The study domain focused on the West Maritime 
Continent (WMC) with a spatial extent of [7S-
10N, 93-110W]. For the GCMs with a resolution 
of 1.5 degrees, this corresponds to a grid size of 
12x12 cells. The historical period from 1995 to 

2014 was chosen as the base period, while the 
future change period spanned from 2080 to 
2099, considering the SSP585 scenario for 
analyzing the warming future. 

The evaluation process involved comparing the 
differences between the reference model and 
the test models in both the historical period and 
future scenarios. The bias correction method 
was applied to the test models using the 
historical data from the reference model. The 
results demonstrated that the bias-adjusted 
simulations effectively reduced the biases 
present in the historical period, bringing them 
closer to the reference model. Furthermore, the 
adjusted future projections showed improved 
agreement with the actual future projections of 
the reference model. 

The successful performance of the bias 
correction method in this evaluation, using the 
ISIMIP3 bias correction approach, provided 
increased confidence in the bias-adjusted 
downscaling outputs. This evaluation process 
contributes to reducing uncertainties associated 
with the bias adjustment procedure and 
enhances the reliability of the projections for the 
impact assessment and decision-making 
processes.

 



 

Table 9.9: CMIP6 model information for the bias adjustment tests 

Category CMIP6 model ensemble ID historical period SSP585 period 

reference model MPI-ESM1-2-HR r1i1p1f1 1850-2014 2015-2100 

test model ACCESS-CM2 r1i1p1f1 1850-2014 2015-2100 

test model EC-Earth3 r1i1p1f1 1850-2014 2015-2100 

test model MIROC6 r1i1p1f1 1850-2014 2015-2100 

test model NorESM2-MM r1i1p1f1 1850-2014 2015-2100 

9.11.1 Evaluation for the mean climatology  

The WMC domain-averaged climatology for 
surface wind speed (sfcWind) from individual 
models was adjusted to match the reference 
model during the historical period, as shown in 
Figure 9.51d. The bias adjustment process 
aimed to correct the discrepancies between the 
individual models and the reference model. By 
applying the bias adjustment, the future 
projections of sfcWind from the test models 
became more aligned with the future projections 
of the reference model, as depicted in Figure 
9.51d. 
 
It is important to note that the specific 
adjustments for each model depended on the 
biases observed in the historical period. In the 
case of MIROC6, this model exhibited an 
underestimation of sfcWind compared to the 

reference model during the historical period. 
Consequently, the bias-adjusted future sfcWind 
in MIROC6 was shifted upwards from the raw 
climatology (green), bringing it closer to the 
actual future projections of the reference model 
(black). Furthermore, the bias-adjusted 
simulations demonstrated a significant 
preservation of the future changes of individual 
models, as illustrated in Figure 9.51f. This 
indicates that the bias adjustment process 
successfully retained the essential 
characteristics of the future changes projected 
by the models while reducing systematic biases. 
 
Overall, the bias adjustment procedure 
effectively improved the realism and accuracy of 
the sfcWind projections from the test models, 
aligning them more closely with the reference 
model.

 



 

 

Figure 9.51: WMC domain averaged sfcWind in the historical period (a,d). Raw model outputs are in a. Bias 
corrected model outputs are in d. WMC domain averaged sfcWind in the future period (b,d). Raw model outputs 
are in b. Bias corrected model outputs are in d. WMC domain averaged sfcWind changes (2080-2099 minus 
1995-2014) (c,f). Raw model outputs are in c. Bias corrected model outputs are in f. 
 

9.11.2 Evaluation for the spatial pattern  

The spatial pattern analysis of surface wind 
speed (sfcWind) in the WMC domain revealed 
certain characteristics for the month of July. 
Specifically, the central land area of the WMC 
tended to have lower wind speeds, while higher 
wind speeds were observed over the open 
ocean area, as depicted in Figure 9.52. This 
spatial distribution of wind speed is indicative of 
the prevailing atmospheric circulation patterns 
during that month. 

Considering the future projections under 
warming from the reference model, a distinct 
change in the spatial pattern of sfcWind was 
observed. The reference model projected 
reduced sfcWind in the northern part of the 
WMC, indicating a weakening of wind speeds in 
that region. Conversely, enhanced sfcWind was 
projected near the equator, suggesting an 
increase in wind speeds in that area due to the 
influence of climate change, as illustrated in 
Figure 9.52. 



 

This spatial pattern analysis provides insights 
into the potential changes in wind patterns and 
intensities within the WMC region under future 
warming scenarios. It demonstrates that the 
reference model's projections capture the 

expected shifts in wind speed distribution, 
allowing for a better understanding of the 
potential impacts of climate change on wind 
patterns in the WMC domain.

 

Figure 9.52: a. WMC domain sfcWind (July) in the historical period of the reference model (MPI-ESM1-2-HR). 
b. Future changes in WMC domain sfcWind projected by the reference model. 
 

During the historical period, the four test models 
(including ACCESS-CM2) generally exhibit a 
similar spatial pattern of surface wind speed 
(sfcWind) compared to the reference model, 
with some variations in magnitude. In the case 
of ACCESS-CM2, it tends to overestimate 
sfcWind in the central WMC region, as illustrated 
in Figure 9.53. 

To address the overestimation issue and 
improve the agreement with the reference 
model, bias adjustment was applied to the 
sfcWind simulations from ACCESS-CM2. The 

bias-adjusted sfcWind values demonstrate a 
better match with the reference model, 
indicating that the adjustment successfully 
mitigated the overestimation bias in the central 
WMC region. The comparison between raw and 
bias-adjusted sfcWind highlights the 
effectiveness of the bias adjustment method in 
reducing discrepancies and improving the 
agreement with the reference model. By 
correcting the systematic biases in the sfcWind 
simulations, the bias-adjusted results provide a 
more reliable representation of the historical 
wind patterns in the WMC domain.

 

 

Figure 9.53: a. WMC domain sfcWind (July) in the historical period of raw test model (ACCESS-CM2). b. bias-
adjusted test model.  

 



 

In terms of the future changes in July surface 
wind speed (sfcWind) over the WMC, the four 
test models (including ACCESS-CM2) exhibit 
varying patterns. For instance, ACCESS-CM2 
projects an enhanced sfcWind over the 
southeastern WMC region and a reduced 
sfcWind over the northwestern WMC region, as 
depicted in Figure 9.54. 

After applying the bias adjustment to the 
sfcWind simulations from the test models, the 
spatial changes in sfcWind are largely preserved 
in the bias-adjusted results. This means that the 
bias adjustment process did not significantly 
alter the projected spatial pattern of sfcWind 

changes. The bias-adjusted simulations still 
reflect the enhanced sfcWind over the 
southeastern WMC and reduced sfcWind over 
the northwestern WMC, in line with the original 
model projections. 

This preservation of the spatial changes in 
sfcWind after bias adjustment provides 
additional confidence in the reliability of the bias-
adjusted simulations for assessing future wind 
patterns over the WMC. It suggests that the bias 
adjustment method successfully corrected the 
systematic biases in the models without 
introducing substantial distortions to the 
projected changes. 

 

Figure 9.54: a. future changes in WMC domain sfcWind projected by raw the test model (ACCESS-CM2). b. 
bias-adjusted test model. 

 

9.12 Summary 

Our high-resolution regional climate model 
(RCM) simulations, conducted at resolutions of 
8km and 2km, have demonstrated excellent 
performance over the Maritime Continent. 
However, these high-resolution RCMs exhibit 
slight model biases when compared to local 
observations specifically within Singapore. To 
ensure that we provide appropriate simulation 
data for local climate change impact studies, we 
have conducted bias adjustments for several 
key climate variables. These variables include 
tas (near-surface air temperature), tasmax 
(maximum air temperature), tasmin (minimum 
air temperature), pr (precipitation), hurs (relative 
humidity), and sfcWind (surface wind speed). By 
applying bias adjustments to these selected 
variables, we aim to align the RCM simulations 
more closely with the observed local climate 
conditions in Singapore.  

In order to perform bias corrections, it is crucial 
to have gridded observation reference data that 
is specifically tailored to the high-resolution (8km 
and 2km) scale required for Singapore. 
However, finding existing observation products 
at such fine resolutions can be challenging. To 
overcome this limitation, we adopted a two-step 
approach. For rainfall (pr), we utilized data from 
28 long-term rainfall stations to create gridded 
precipitation data at resolutions of 2km and 8km 
using advanced kriging techniques. This allowed 
us to generate gridded precipitation reference 
datasets that closely represent the spatial 
variability of rainfall in Singapore. Evaluations 
conducted on the kriged precipitation data 
demonstrated its suitability as a reference 
dataset, as it exhibited strong consistency with 
the station precipitation data. For other 
variables, such as temperature (tas, tasmax, 
tasmin), relative humidity (hurs), and surface 
wind speed (sfcWind), the number of available 



 

long-term stations was insufficient for directly 
converting them into gridded products. 
Therefore, we used the 25km-resolution ERA5 
reanalysis dataset to drive the 8km and 2km 
resolution RCMs. The output within the 
Singapore domain from the ERA5-RCM 
simulations served as the gridded reanalysis 
reference. Evaluations conducted on the ERA5-
RCM data revealed its suitability as a reference 
dataset, as it demonstrated excellent 
consistency with the available station data 
across Singapore. These gridded reference 
datasets, derived from kriging of station data for 
precipitation and the ERA5-RCM simulations for 
other variables, currently represent the best 
options available for conducting bias corrections 
in our study. If new observation products 
become available at higher resolutions in the 
future, we can update the historical reference 
accordingly in subsequent studies. 

For the bias adjustment process in the V3 study, 
we recognized the need for advanced features 
beyond the straightforward quantile-mapping 
based bias adjustment methods used in V2. 
These new requirements included preserving 
trends, correcting rainfall frequency, and 
customizing distribution fits for each variable, 
among others. To meet these demands, we 
implemented the latest and widely used ISIMIP3 
bias adjustment methods. The results of the bias 
adjustment process demonstrated the 
successful removal of biases in the adjusted 
historical simulations. Additionally, the future 
simulations showed improved realism after the 
adjustments. Importantly, the adjustments were 
able to preserve the future change signals 
present in the raw simulations, ensuring that the 
projected climate changes remained intact. To 
provide further confidence in the reliability of the 
bias adjustments, we conducted pseudo reality 
experiments. In these experiments, we 
designated one model as the reference, with 

known historical and future data. We then 
applied bias adjustments to the other test 
models and assessed the performance and 
added value of the adjustments. The results of 
these tests revealed that the simulations after 
bias adjustments were more realistic compared 
to the raw simulations. By incorporating the 
advanced features and conducting rigorous 
evaluations, the bias adjustments performed in 
the V3 study produced more reliable and 
accurate climate simulations. These adjusted 
simulations provide greater confidence in their 
use for assessing climate change impacts in 
Singapore. 

In addition to the main climate variables, we 
derived key extreme indices based on certain 
variables to assess the characteristics of 
extreme events. For example, we calculated the 
maximum consecutive wet days (CWD) using 
the precipitation (pr) data and the number of 
very heavy precipitation days (R20mm). Our 
findings indicate that these frequency-based 
indices (CWD and R20mm) calculated using the 
raw simulations exhibited biases. However, after 
applying the bias adjustments, the biases in the 
CWD and R20mm based on the adjusted 
simulations were largely removed. This 
demonstrates the effectiveness of the bias 
adjustments in improving the accuracy of 
extreme indices. 

In conclusion, the bias adjustments conducted in 
our study have demonstrated very good 
performance. We consider bias adjustment to be 
a crucial step in the post-processing of regional 
downscaling simulations, as it significantly 
improves the realism and accuracy of the 
regional climate model (RCM) outputs. The 
successful implementation of bias adjustments 
enhances our confidence in the climate 
projections and their suitability for assessing and 
addressing the impacts of climate change in 
Singapore.
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10.1 Introduction 

In this chapter, we present the climate change 
projections over Singapore using the 2km 
dynamically downscaled simulations that have 
been bias-adjusted to reduce systematic biases 
reported in Chapter 7 of this report. As discussed 
in Chapter 9, the 8km and 2km downscaled 
projections over Singapore were bias-adjusted 
using one of the advanced techniques 
recommended by ISIMIP3 (Lange, S. 2019). 

Singapore’s climate change projections are 
presented for annual and seasonal scales. For the 
seasons, 5 periods corresponding to Singapore’s 
monsoon and intermonsoon transition seasons 
were selected: the northeast monsoon season, 
the southwest monsoon season and both the 
intermonsoons. The northeast monsoon season is 
further divided into the wet phase comprising the 
months of December and January, and the dry 
phase comprising the months February and 
March. The southwest monsoon season 
comprises the months of June through 
September, and the first and second 
intermonsoon periods occur in April-May and 
October-November respectively. 

Specifically, we present changes in the mean 
state and extremes of some key variables under 
the three SSP scenarios for the mid- and end-
century 20-year periods: 

Changes in rainfall: For mean rainfall, we present 
changes in the annual and seasonal mean rainfall. 
For rainfall extremes, we present changes in the 
maximum daily rainfall (RX1day), maximum 5-day 
rainfall (RX5day), the 95th and 99.9th percentiles 
in each season and for the annual timescale. 
Changes are only shown for the end-century 
period under the SSP5-8.5 scenario. 

Changes in temperature: For mean 
temperature, we present changes in the annual 
and seasonal mean temperature, and for 
temperature extremes we present changes in 
the daily maximum temperature, daily 
minimum temperature, annual maximum 
temperature, annual minimum temperature, 
the 95th and 99.9th percentiles. 

Changes in heat stress: For heat stress index, 
we present changes in the wet bulb globe 

temperature (WBGT) for annual and various 
seasons. 

Changes in relative humidity: For relative 
humidity, we present changes in the 2m 
relative humidity for annual and various 
seasons. 

Changes in near- surface winds: For winds, we 
present changes in the 10m wind speed for 
annual and various seasons. For wind gusts we 
present changes in wind gusts during the mid- 
and end-century for SSP5-8.5.  

Finally, we also compare the similarities and 
differences in the projected rainfall and 
temperature changes over Singapore from the 8 
km bias-adjusted data with the 2 km bias-adjusted 
data. 

In the figures where we show projected changes 
for the mid- and end-century for the 3 SSPs, we 
document the changes for each of the periods by 
referring to the changes shown by the multi-model 
mean (thin line) in the 3 SSPs followed by the 
range (lowest projected change to highest 
projected change) within each SSP shown in 
brackets. 

 

10.2 Changes in Mean Rainfall 

Figure 10.1 shows the projected changes in the 
mean rainfall, area-averaged over Singapore, 
under the 3 SSP scenarios for the entire year 
(annual) and different seasonal periods as 
presented in Section 10.1.  

 

10.2.1 Annual Rainfall 

Overall, across all scenarios, the multi-model 
average in annual mean rainfall is projected to 
increase or remain the same both in the mid- and 
end-century. However, the magnitude of change 
varies going from mid-century to end-century 
between the scenarios (Table 10.1, Figure 10.1): 
an increase is projected in SSP1-2.6 (5% to 11%), 
almost no change is projected for SSP2-4.5 (i.e. 
remaining at 5%), and a decrease is projected in 
SSP5-8.5 (from 10% to 0%). The large drop in 
projected mean change in SSP5-8.5 from the mid-
to-end century is largely due to the increased 
spread between the models (i.e. lack of model 



consensus in the sign of change by the end-
century). The differences seen between the 
scenarios indicate that the local change in annual 
mean rainfall change does not necessarily scale 

with global warming, unlike the global average as 
reported in IPCC AR6. There can be significant 
differences on regional and local scales, as seen 
for Singapore. 

 
Table 10.1: Projected changes in annual mean rainfall (percent change) 

Scenario Mid-Century Annual Rainfall Change (%) End-Century Annual Rainfall Change (%) 

 Mean Range Mean Range 

SSP1-2.6 5 -2 to 8 11 0 to 24 

SSP2-4.5 5 -2 to 12 5 -6 to 12 

SSP5-8.5 10 -5 to 19 0 -12 to 17 

 

While there is a similar annual mean rainfall by 
2100, we observe that the year-to-year variation 
has increased over time, particularly towards the 
second half of the 21st century (not shown). The 
change in variability is most likely related to the 
change in ENSO behavior in the future. New 
evidence suggests that ENSO variability will likely 
increase in the future i.e., more extreme El Ninos 
and La Niñas (Cai et al., 2014, 2021).  

Although the annual mean rainfall is projected to 
increase/remain same both in the mid- and end-

century across all scenarios, the seasonal mean 
changes differ across seasons. Based on the 
multi-model mean changes in SSP5-8.5, there are 
increases in wet months (e.g. DJ) and decreases 
in dry months (e.g. FM, JJAS) at the end of the 
century. This increased contrast between 
seasons was noted in the 2nd National Climate 
Change Study (V2), and might be linked to the 
narrowing of the ITCZ projected by global models 
(e.g. Byrne and Schneider., 2016). We discuss 
these changes in detail below. 

 

 
Figure 10.1: Percentage change of rainfall total (pr) in the Annual, December–January, February–March, April–May, June–
July–August–September, and October–November for mid- (2040–2059) and end-century (2080–2099) periods from the 5 bias-



adjusted downscaled GCMs (2 km) over Singapore relative to the baseline (1995–2014). The line and diamond represent the 
mean and median using the 5 models, respectively. For readability, the values are available in Tables 10.1-10.6. 

 

10.2.2 December-January (DJ) rainfall (wet 
phase of NE monsoon) 
 
The projected changes in DJ rainfall follow a 
similar pattern to the change in mean annual 
rainfall. Overall, DJ rainfall is projected to increase 
by the end of the century across all scenarios. 
However, the magnitude of change differs 
between the scenarios. While the average DJ 
rainfall is projected to increase even more under 
SSP1-2.6 (from 7% in mid-century to 20% in end-

century), the projected changes are considerably 
smaller under SSP2-4.5 and especially in SSP5-
8.5 (24% in mid-century to only 2% in end-
century). This suggests that local DJ rainfall 
changes over Singapore do not scale with the 
level of global warming. In chapter 8, we noted a 
slight increase in the frequency of NE monsoon 
surges from November to February (NDJF), with 
small changes in the magnitude of rainfall during 
surge days. It is possible that the changes would 
be different in other scenarios, or even in DJ as 
opposed to NDJF.   

 
Table 10.2: Projected Changes in DJ Mean Rainfall (percent change) 

DJ Mid-Century Dec-Jan Rainfall Change (%) End-Century Dec-Jan Rainfall Change(%) 

 Mean Range Mean Range 

SSP1-2.6 7 -1 to 16 20 -12 to 58 

SSP2-4.5 1 -12 to 26 6 -9 to 28 

SSP5-8.5 24 4 to 63 2 -20 to 44 

 
However, there is a general agreement among the 
model projections for the wet phase of the NE 
monsoon season to become slightly wetter, 
consistent with the finding in the 2nd National 
Climate Change Study (V2). This could be due to 
a multitude of factors such as changing 
characteristics of Borneo Vortices, which could 
become less frequent but bring more rainfall 
(Liang et al., 2021), an increase in MJO-related 
rainfall from the second half of the 21st century 

(Bui et al., 2023) and/or the occurrence of more El 
Ninos (Cai et al., 2021; Geng et al., 2022). Note 
that while El Nino is known to reduce rainfall 
across many parts of the region during NE 
monsoon season, historical climatological records 
show that local December rainfall for Singapore 
actually increases during El Nino events and 
decreases during La Nina events, compared to 
ENSO-neutral conditions (no El Nino or La Nina in 
the Pacific). 

 

10.2.3 February-March (FM) rainfall (dry 
phase of NE monsoon) 
 
The projections for February-March mean rainfall 
indicate a drying tendency for the 2nd half of the 
21st century under the moderate (SSP2-4.5)  and 
high warming (SSP5-8.5) scenarios. This is in 
contrast to a projected increase under the low 
warming (SSP1-2.6) scenario (-2% mid-century to 
13% end-century). The reasons for the difference 
in the sign of change between the scenarios by 
the end of the century are unclear at this stage but 
could be related to the differences in the timing, 
magnitude and regional impacts of decadal-scale 
variability between the scenarios (Johnson et al., 
2020). In addition, the high mean change value for 
the mid-century under the SSP5-8.5 scenarios 

(25%) is positively skewed by an outlier model (c.f. 
mid-century range is -24 to 112 %). Likewise, the 
projected mid-century mean change under SSP1-
2.6 is also positively skewed by an outlier model 
(c.f. the separation between the median diamond 
and mean thin line markers, Figure 10.1). 
 
Nonetheless, the signs of the end-century 
projected changes under SSP2-4.5 and SSP5-8.5 
reported here are consistent with the end-century 
changes projected in V2 for the same months. 
Under the RCP8.5 scenario, six out of nine 
models projected a statistically significant 
decreasing signal of more than 30% change in 
mean February rainfall towards the end of the 
century (Figure 5.23, Marzin et al. 2015). This 
suggests that the projected drying trend in the 



drier phase of the NE monsoon is likely to be 
robust and could be associated with stronger 
cross-equatorial flow in the future (Liang et al., 
2022). Cross-equatorial northerly surges are a 
feature during the drier phase of the NE monsoon. 
These tend to shift the rainband south of the 
equator and into the Java Sea, thereby reducing 
rainfall over Singapore. 

Overall, the findings here suggest that NE 
monsoon could experience a much greater intra-
seasonal contrast in the future by the end of the 
century with the wet phase of the NE monsoon 
projected to become slightly wetter and the drier 
phase NE monsoon likely to become drier. 

 
Table 10.3: Projected Changes in FM Mean Rainfall (percent change) 

FM Mid-Century Feb-Mar Rainfall Change (%) End-Century Feb-Mar Rainfall Change (%) 

 Mean Range Mean Range 

SSP1-2.6 -2 -18 to 45 13 -2 to 49 

SSP2-4.5 3 -27 to 52 -7 -39 to 48 

SSP5-8.5 25 -24 to 112 -18 -43 to 30 

10.2.4 April-May (AM) and October-
November (ON) rainfall (first and second 
intermonsoon periods) 

The first (AM) and second (ON) intermonsoon 
periods both exhibit very similar positive changes 
both in the mid-century and end-century. Overall, 
both intermonsoon periods show increased mean 
rainfall by the end of the century across the 
scenarios, although there is a slight reduction in 
the positive change of ON mean rainfall under 
SSP1-2.6 (from 13% to 8%). Under SSP1-2.6, 
most of the warming in global mean and local 
Singapore temperatures takes place by mid-
century. As such, there is not expected to be much 
additional influence of warming on rainfall from 

mid-century to end-century. As such, the 
reduction in the magnitude of the positive change 
from mid-century to end-century in ON rainfall is 
more likely due to decadal variability. This is also 
most likely the case for AM mean rainfall.  

In contrast, the magnitude of change under SSP2-
4.5 and SSP5-8.5 for AM and ON mean rainfall 
both increase by the end of the century, and are 
likely to be governed more by the climate change 
signal. Both the scenarios show increases of 
mean rainfall with warming from mid- to end-
century, albeit at different rates (e.g. from 12% to 
14% under SSP2-4.5, and from 8% to 14% under 
SSP5-8.5 for ON rainfall, see Table 10.5). 

 
Table 10.4: Projected Changes in AM Mean Rainfall (percent change) 

AM Mid-Century Apr-May Rainfall Change (%) End-Century Apr-May Rainfall Change (%) 

 Mean Range Mean Range 

SSP1-2.6 6 -10 to 22 13 -5 to 23 

SSP2-4.5 8 -6 to 22 10 -15 to 33 

SSP5-8.5 8 -2 to 14 18 -6 to 52 

 
Table 10.5: Projected Changes in ON Mean Rainfall (percent change) 

ON Mid-Century Oct-Nov Rainfall Change (%) End-Century Oct-Nov Rainfall Change (%) 

 Mean Range Mean Range 

SSP1-2.6 13 -1 to 25 8 -4 to 24 

SSP2-4.5 12 -9 to 29 14 -2 to 31 

SSP5-8.5 8 -7 to 30 14 -8 to 41 

 

10.2.5 June-September (JJAS) rainfall (SW 
monsoon) 

 

As in FM rainfall, the SW monsoon season only 
shows an increase in mean JJAS rainfall from 
mid- to end-century under the SSP1-2.6 scenario, 
while the other scenarios show slight change 



(SSP2-4.5) or a reduction in rainfall (SSP5-8.5). 
The behavior under SSP1-2.6 is likely again to be 
associated with decadal variability while the 
response under SSPs 2-4.5 and 5-8.5 are more 
likely related to the warming climate, with JJAS 
rainfall potentially reducing by an average of 14% 
by 2100.  

The mechanism for this drying trend could be 
related to how SST warming patterns in the 
tropical Pacific might change in the future to 
become more El Nino-like. Such changes are 
known to greatly affect the southwestern Maritime 
Continent region  (Ghosh & Shepherd, 2023).  

Recent work by CCRS suggests that seasonal 
rainfall totals are likely to fluctuate even more in 
the future due to the stronger relationship that 
ENSO exerts over rainfall in the Western Maritime 
Continent region during the Southwest Monsoon 
season (Chen et al., 2023). For the influence of 
ENSO, we also showed in Chapter 8 section 8.4.3 

that GCMs and RCMs both suggest that ENSO-
induced negative teleconnection area over the 
equatorial MC is enlarged under warming.  

An even drier JJAS season increases the risk of 
peatland and forest fires and thus transboundary 
haze for this highly vulnerable region. The drying 
signal is considered robust since it further 
supports the findings from V2 (in which four of 
nine models showed statistically significant 
decreases in mean rainfall at the end of the 21st 
century under the RCP 8.5 scenario, see Figure  
5.22b, Marzin et al., 2015).  

Overall, we find that the projected mean rainfall 
change varies in sign and magnitude across the 
seasons for both mid- and end-century periods 
and for all scenarios. The largest range in 
probable outcomes is shown for February-March 
(due to an outlier). 

 

 
Table 10.6: Projected Changes in JJAS Mean Rainfall (percent change) 

JJAS Mid-Century Jun-Sep Rainfall Change (%) End-Century Jun-Sep Rainfall Change (%) 

 Mean Range Mean Range 

SSP1-2.6 0 -10 to 13 5 -10 to 17 

SSP2-4.5 2 -5 to 17 0 -17 to 22 

SSP5-8.5 -6 -17 to 10 -14 -42 to 6 

The end-century changes under SSP1-2.6 are 
more likely to be related to decadal variability 
while the projected changes under SSP2-4.5 and 

especially SSP5-8.5 are likely a response to the 
increased warming brought by increasing 
greenhouse gas emissions.  

 

10.3 Changes in Rainfall Extremes  

Extreme rainfall – as represented by the average 
maximum 1-day and 5-day totals on annual and 
seasonal time scales – is expected to increase 
considerably by the end of the 21st century. In 
Chapter 8 Section 8.3.3, we showed that extreme 
rainfall changes across Southeast Asia. Here in 
this section of Chapter 10, we focus on Singapore 
to address changes in the rainfall extremes. The 
increases in both extreme rainfall metrics occur for 
all seasons and across all of Singapore except for 
February and March, in which a reduction in the 
average intensity of RX1day and RX5day is 
projected over the northern, central and southern 
parts of Singapore (Figure 10.2 and Figure 10.3). 
Interestingly, increases in average RX1day and 
RX5day rainfall (10-45%) are still projected for the 

easternmost and westernmost areas of Singapore 
during the dry phase of the NE monsoon. 

The areas with the highest projected percentage 
increases vary with season. Overall, the largest 
values occur during the intermonsoon periods. 
Specifically, the biggest changes (40-50% relative 
to the 1995-2014 baseline) are seen over the 
western and central areas during the first inter 
monsoon period (April-May), while these are 
concentrated to the far east of Singapore during 
the second intermonsoon (October-November).  

In contrast, the wet NE monsoon (December-
January) and the SW monsoon periods show 
smaller projected increases across Singapore. 
There is a southwest-to-northeast gradient in the 
pattern of intensity change during the SW 



monsoon (June-September) with relatively higher 
percentage increases projected in mean RX1day 
and RX5day for the northeastern areas and lower 
in the southwest portions of the country. The 
spatial pattern of percentage increases is more 
heterogeneous during the wet phase of the NE 
monsoon. 

Notably, the spatial pattern of both RX1day and 
RX5day average intensity changes are very 
similar. This suggests that RX5day extremes are 
dominated by the extreme rainfall amounts on 
daily time scales. The overall increase in both 
average RX1day and RX5day intensities in all 
seasons except for the NE monsoon dry period is 

consistent with the expectation that rainfall (wet) 
extremes will become more severe in a warming 
world (Seneviratne et al., 2021). 

The increases in mean RX1day and RX5day imply 
that there are changes to the future characteristics 
of extreme precipitation events typical for the 
season. For the two intermonsoon periods, daily 
rainfall is often dominated by the frequent diurnal 
occurrence of afternoon convective 
thunderstorms. The strong increase in mean 
RX1Day rainfall suggests that future convective 
thunderstorms are either more intense and/or 
lasting longer, on average, than those in the 
current climate. 

 

 
Figure 10.2: Ensemble mean (5 bias-adjusted 2km downscaled GCMs) percentage change of maximum 1-day (Rx1day) 
precipitation in annual, December–January, February–March, April–May, June–July–August–September, and October–



November months during end-century (2080–2099) period relative to the baseline (1995–2014) over Singapore under the SSP5-
8.5 scenario. 
 

For the NE monsoon wet phase, extreme daily 
rainfall values in the historical observations are 
likely caused by strong monsoon surges. The 
projected increases in mean RX1day and RX5day 
for the two intermonsoons and the wet NE 

monsoon phase suggest that rainfall associated 
with strong monsoon surges have become more 
severe (i.e. more total rainfall associated with 
them). 

 

 
Figure 10.3: Ensemble mean (5 bias-adjusted 2km downscaled GCMs) percentage change of annual maximum 5-day (Rx5day) 
precipitation in annual, December–January, February–March, April–May, June–July–August–September, and October–
November months during end-century (2080–2099) period relative to the baseline (1995–2014) over Singapore under the SSP5-
8.5 scenario. 

 
Note that, as we showed in Chapter 8 Section 8.3, 
Singapore is in between regions of increase and 
decrease for both mean rainfall and extremes in 
all seasons, so it is likely that a small shift in either 
direction could change the sign of the projected 
change over Singapore. Therefore, we need to be 

careful to interpret the detailed spatial changes 
across Singapore. 

Precipitation extremes over the entire Singapore 
are measured using the 95th and 99.9th 
percentiles of daily rainfall distributions. Figure 



10.4 shows the percentage changes in the 
extreme rainfall percentiles (95th and 99.9th) in 
the mid-century and end century under SSP5-8.5 
scenario relative to historical period at annual and 
seasonal time scales. As seen in the figure, the 
extreme rainfall is projected to increase but vary 

at annual and seasonal time scales both in mid 
and end century.  

At annual time scales (Table 10.7), both the multi-
model mean 95th and 99.9th percentile of daily 
rainfall experience larger rises in the mid-century 
compared to the end-century period.  

 
Table 10.7: Projected percentage changes in extreme daily rainfall percentiles (ANN) 

ANN Percentage change in annual extreme Rainfall (SSP5-8.5) 

 95th Percentile 99.9th Percentile 

 Mean Range Mean Range 

Mid century 15.6 0.6 to 24.2 39.4 9.3 to 64.6 

End century 11.9 -0.3 to 21 26.4 12.7 to 43 

 
During the northeast monsoon wet season (DJ; 
Table 10.8), 95th percentile rainfall in the mid 
century has a larger range compared to the end-
century values; both the 95th and 99.9th 
percentile rainfall show reductions from their mid-
century values to smaller increases in the end-
century.  

For the northeast monsoon dry season (FM; Table 
10.9 and Fig. 10.4), the 95th and 99.9th percentile 
rainfall in the mid century has the largest range 
among the models. Towards the end of the 
century, both the 95th and 99.9th percentiles 
reduced from their mid-century values.  

 
Table 10.8: Projected changes in extreme daily rainfall percentiles (DJ) 

DJ Percentage change in Dec-Jan extreme Rainfall (SSP5-8.5) 

 95th Percentile 99.9th Percentile 

 Mean Range Mean Range 

Mid century 31.5 6 to 92.8 50.6 28.6 to 88.2 

End century 11.7 -17.1 to 50.9 36.2 26.3 to 42.9 

 
Table 10.9: Projected changes in extreme daily rainfall percentiles (FM) 

FM Percentage change in Feb-Mar extreme Rainfall (SSP5-8.5) 

 95th Percentile 99.9th Percentile 

 Mean Range Mean Range 

Mid century 31.8 -19.6 to 118.5 47.6 -3.8 to 144.2 

End century -11.1 -40 to 29.5 20.2 -10.6 to 50.9 

 
In contrast to the northeast monsoon season, the 
multi-model mean precipitation extremes (95th 
and 99.9th) over the first intermonsoon (AM; Table 
10.10, and second intermonsoon (ON; Table 
10.12) season rise towards the end of the century. 

The southwest monsoon season shows a small 
decrease in the multi-model mean 95th percentile 
but 50 % increase (from 19.4 to 29.3 % change) 
for the 99.9th percentile. 

 
Table 10.10: Projected changes in extreme daily rainfall percentiles (AM) 

AM Percentage change in Apr-May extreme Rainfall (SSP5-8.5) 

 95th Percentile 99.9th Percentile 

 Mean Range Mean Range 

Mid century 12.2 3.3 to 19 25.7 10 to 41.9 



End century 27.4 5.3 to 58.3 53.4 21.6 to 91.6 

 
Table 10.11: Projected changes in extreme daily rainfall percentiles (ON) 

ON Percentage change in Oct-Nov extreme Rainfall (SSP5-8.5) 

 95th Percentile 99.9th Percentile 

 Mean Range Mean Range 

Mid century 13.5 -0.3 to 27.9 23.7 9.2 to 38.7 

End century 26.0 8.5 to 48.3 46.8 31.3 to 75.0 

 
Table 10.12: Projected changes in extreme daily rainfall percentiles (JJAS) 

JJAS Percentage change in Jun-Sep extreme Rainfall (SSP5-8.5) 

 95th Percentile 99.9th Percentile 

 Mean Range Mean Range 

Mid century 0.8 -10.9 to 14.1 19.4 10.9 to 29.6 

End century 0.2 -25.7 to 16.5 29.3 18.9 to 36.9 

 

 
Figure 10.4: Percentage changes in 95th and 99.99th daily rainfall percentile amounts for annual and various seasons from the 
2-km bias-adjusted SINGV-RCM simulations during the mid- (orange) and end-century (red) for SSP5-8.5. The line and diamond 
represent the mean and median using the 5 models, respectively. Rainfall percentiles are based on all days, pooled over all 
Singapore grid points; each percentile uses the nearest corresponding daily rainfall value. For readability, the values have been 
provided in Table 10.7-10.12. 
 
The drought conditions over a region are 
measured using the maximum number of 
consecutive dry days (dry spell length). Figure 
10.5 shows the annual maximum dry spell length 
(i.e. consecutive dry days) over Singapore in 
historical (1995-2014) and future (i.e. mid-century 
(2040-59) and end century (2080-99) under three 
SSP scenarios) time periods. As seen in Figure 

10.5 and Table 10.13, the multi-model mean dry 
spell length in SSP5-8.5 increases with warming 
in the mid-century (~21 days) and end century 
(~23 days) relative to historical periods (Table 
10.13). The increased dry spell length in a future 
warmer climate could put more stress on the water 
resources and energy consumption of Singapore. 

 
Table 10.13: Historical and projected annual maximum dry spell length 

 Mean dry spell length (days) Dry spell length range (days) 

Historical 21.1 18.5 to 22.3 



Future Mid-Century End-Century 

 Mean Range Mean Range 

SSP1-2.6 22.3 21 to 25 21 20.3 to 22 

SSP2-4.5 21.7 18.5 to 24.2 23 20.8 to 25.7 

SSP5-8.5 21.8 18.7 to 24.8 23.3 18.7 to 25.7 

 

 
Figure 10.5: Historical and future annual maximum dry spell length for mid- (2040–2059) and end-century (2080–2099) periods 
from the 5 bias-adjusted downscaled GCMs (2 km) over Singapore relative to the baseline (1995–2014). The line and diamond 
represent the mean and median using the 5 models, respectively. For readability, the values are available in Tables 10.13. 

 
Figure 10.6 shows the annual number of dry spells 
for more than 5 consecutive dry days over 
Singapore in historical and future (i.e. mid-century 
and end century under three SSP scenarios) time 
periods. As seen in Figure 10.6 and Table 10.14, 
the multi-model mean annual dry spell numbers 
under the SSP5-8.5 scenario are projected to 
increase in mid-century (~0.4) and end century 

(~0.7) compared to historical periods. On 
average, Singapore could experience a dry spell 
from once every ten months (1/1.2 multiplied by 
12) to once every sixty months (1/0.2 multiplied by 
12). The increased number of dry spells would be 
expected to increase the frequency of droughts 
over Singapore. 

 
Table 10.14: Historical and projected changes in annual dry spell (length >= 15 days) numbers 

 Mean dry Spell number (count) Dry spell number range (count) 

Historical 0.2 0.1 to 0.3 

Future Mid-Century End-Century 

 Mean Range Mean Range 

SSP1-2.6 0.3 0.2 to 0.7 0.3 0.2 to 0.5 

SSP2-4.5 0.3 0.25 to 0.35 0.6 0.45 to 0.75 

SSP5-8.5 0.4 0.2 to 0.6 0.7 0.4 to 1.2 

 
 



 
Figure 10.6: Historical and future annual number of dry spells for mid- (2040–2059) and end-century (2080–2099) periods from 
the 5 bias-adjusted downscaled GCMs (2 km) over Singapore relative to the baseline (1995–2014). The line and diamond 
represent the mean and median using the 5 models, respectively. For readability, the values are available in Tables 10.14. 

 
 

10.4 Changes in Mean Temperature 

Figure 10.7 shows the projected changes in the 
mean temperatures over Singapore under 3 SSP 
scenarios at different timescales in the mid- 
(2040-2059) and end-century (2080-2099) 
relative to the historical (1995-2014). As seen in 
Figure 10.7, the mean temperatures are projected 
to increase under the three scenarios both in mid- 
and end-century at annual (Table 10.15) and 
seasonal time scales (Table 10.16-10.20). The 
southwest monsoon (JJAS) and the second 
intermonsoon period (ON) seasons noted the 
biggest rises in surface temperatures at the end of 

the century, each by 3.9oC and 4.0oC, 
respectively. At the end of the century, the annual 
mean surface temperatures are projected to 
increase by 1.1oC, 2.0oC, 3.8oC under the SSP1-
2.6, SSP2-4.5, and SSP5-8.5 respectively. Also 
note that, for each scenario and time period, the 
changes for each season are very similar to one 
another.  

From these projections we can infer that under the 
low-emission scenario of SSP1-2.6, temperature 
over Singapore will generally rise further by at 
least 1 degree during both mid- and end-century. 

 
 
 



Table 10.15: Projected changes in annual mean near-surface air temperature 

ANN Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 1.0 0.6 to 1.3 1.1 0.6 to 1.6 

SSP2-4.5 1.2 0.8 to 1.7 2.0 1.4 to 2.8 

SSP5-8.5 1.6 0.9 to 2.2 3.8 2.8 to 5.0 

 
Table 10.16: Projected changes in DJ mean near-surface air temperature 

DJ Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 0.9 0.6 to 1.2 1.0 0.5 to 1.6 

SSP2-4.5 1.1 0.7 to 1.6 1.9 1.3 to 2.7 

SSP5-8.5 1.5 0.9 to 2.1 3.7 2.6 to 4.7 

 
Table 10.17: Projected changes in FM mean near-surface air temperature 

FM Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 1.0 0.5 to 1.4 1.1 0.5 to 1.7 

SSP2-4.5 1.2 0.7 to 1.7 2.0 1.2 to 2.8 

SSP5-8.5 1.5 0.8 to 2.1 3.7 2.5 to 5.1 

 
Table 10.18: Projected changes in AM mean near-surface air temperature 

AM Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 1.0 0.6 to 1.3 1.2 0.6 to 1.7 

SSP2-4.5 1.3 0.7 to 1.7 2.1 1.3 to 2.8 

SSP5-8.5 1.5 0.8 to 2.1 3.8 2.6 to 5.0 

 
Table 10.19: Projected changes in ON mean near-surface air temperature 

ON Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 0.9 0.7 to 1.3 1.1 0.6 to 1.6 

SSP2-4.5 1.2 0.9 to 1.7 2.0 1.4 to 2.8 

SSP5-8.5 1.6 1.1 to 2.2 4.0 2.9 to 5.1 

 
Table 10.20: Projected changes in JJAS mean near-surface air temperature 

JJAS Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 1.0 0.7 to 1.3 1.1 0.6 to 1.6 

SSP2-4.5 1.2 0.8 to 1.7 2.1 1.5 to 2.8 

SSP5-8.5 1.6 0.9 to 2.2 3.9 3.1 to 5.0 

 
 



 
Figure 10.7: Change in mean daily near-surface air temperature in annual, December–January, February–March, April–May, 
June–July–August–September, and October–November during mid- (2040–2059) and end-century (2080–2099) periods from 
the 5 bias-adjusted downscaled GCMs (2 km) over Singapore relative to the baseline (1995–2014). The line and thin diamond 
represent the mean and median from the 5 models, respectively. For readability, the values are available in Tables 10.15-10.20. 

 

10.5 Changes in Temperature 
Extremes 

Temperature extremes of a region can be 
determined using the mean daily maximum and 
mean daily minimum temperatures. Figure 10.8 
shows the projected changes in the extreme 
temperatures across Singapore under the three 
SSPs in the mid-century (2040-2059) and the end-

century (2080-2099). As seen in Figure 10.8, 
Singapore’s daily maximum (Table 10.21) and 
daily minimum temperatures (10.22) are projected 
to increase under the three scenarios both in the 
mid- and end-century. In the mid century, the daily 
maximum and daily minimum temperatures can 
increase by 1.6oC under the SSP5-8.5 scenario. 
Towards the end of the century, the daily 
maximum and daily minimum temperatures can 
increase by 4.0oC under the SSP5-8.5 scenario.  

 
Table 10.21: Projected changes in annual mean daily maximum temperature 

ANN Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 1.0 0.6 to 1.4 1.1 0.5 to 1.7 

SSP2-4.5 1.2 0.8 to 1.8 2.1 1.4 to 3.0 

SSP5-8.5 1.6 0.9 to 2.2 4.0 2.9 to 5.3 

 
Table 10.22: Projected changes in annual mean daily minimum temperature 

ANN Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 



SSP1-2.6 1.0 0.6 to 1.3 1.1 0.6 to 1.6 

SSP2-4.5 1.2 0.8 to 1.7 2.1 1.5 to 2.8 

SSP5-8.5 1.6 1.0 to 2.2 3.9 2.9 to 4.9 

 
It is to be noted that even a resolution of 2 km is 
coarse to model urban effects and hence the 
projected maximum and minimum temperatures 
do not take into account the impact of the Urban 
Heat Island (UHI), and hence the current 
projections of absolute temperatures may be 
considered as an underestimation, although there 
could be a much lesser impact on the projected 
changes. Hence, follow up studies are being 

planned by CCRS that will further downscale the 
2 km model simulations to 300 m (or 100 m if 
feasible) resolution over Singapore using the 
urban version of the SINGV model (uSINGV) that 
takes into account the urban impacts on climate 
variables at local scales. Daily maximum and daily 
minimum temperatures in Singapore are indicated 
by the multi-model mean to increase by at least 
1oC under the low emission scenario (SSP1-2.6). 

 

 

Figure 10.8: Change in mean daily minimum (tasmin) and maximum (tasmax) near-surface air temperature during mid-century 

(2040–2059) and end-century (2080–2099) period for the 5 bias-adjusted downscaled GCMs (2 km) over Singapore relative to 

the baseline (1995–2014). The line and thin diamond represent the mean and median over the 5 models, respectively. For 

readability, the values are available in Tables 10.21-10.22. 

 
Temperature extremes can also be estimated 
using the 95th and 99.9th percentiles of the daily 
maximum temperatures of a region. Figure 10.9 
shows the projected changes in the extreme 
temperature percentiles (95th & 99.9th) in the mid-
century and end century under the SSP5-8.5 
scenario at annual and seasonal time scales. As 
seen in Figure 10.9, the extreme temperatures 
(95th and 99.9th percentiles) are expected to 
increase during mid and end century under the 

SSP5-8.5 at annual (Table 10.23) and seasonal 
time scales (Table 10.24-10.28). Towards the end 
of the 21st century (2100) under the SSP5-8.5 
scenario, the temperature extremes are projected 
to significantly increase (>4oC) across annual and 
seasonal time scales. Based on the multi-model 
mean, the second inter monsoon season (ON) is 
expected to experience the highest increases of 
about 4.7oC in the extreme temperatures (95th 
and 99.9th percentile) at the end of the century. 

 
 
 
 



Table 10.23: Projected changes in extreme temperature percentiles (ANN) 

ANN Absolute changes (SSP5-8.5) compared to historical period (oC) 

 95th Percentile 99.9th Percentile 

 Mean Range Mean Range 

Mid century 1.8 1.0 to 2.5 2.0 1.0 to 2.8 

End century 4.4 3.0 to 5.7 4.5 3.0 to 5.9 

 
Table 10.24: Projected changes in extreme temperature percentiles (DJ) 

DJ Absolute changes (SSP5-8.5) compared to historical period (oC) 

 95th Percentile 99.9th Percentile 

 Mean Range Mean Range 

Mid century 1.5 0.5 to 2.6 1.8 1.0 to 2.9 

End century 4.1 3.0 to 5.3 4.3 3.0 to 5.8 

 
Table 10.25: Projected changes in extreme temperature percentiles (FM) 

FM Absolute changes (SSP5-8.5) compared to historical period (oC) 

 95th Percentile 99.9th Percentile 

 Mean Range Mean Range 

Mid century 1.8 1.0 to 2.6 2.0 1.0 to 2.9 

End century 4.3 2.7 to 5.8 4.5 2.9 to 6.0 

 
Table 10.26: Projected changes in extreme temperature percentiles (AM) 

AM Absolute changes (SSP5-8.5) compared to historical period (oC) 

 95th Percentile 99.9th Percentile 

 Mean Range Mean Range 

Mid century 1.7 1.0 to 2.3 1.8 1.2 to 2.3 

End century 4.2 3.0 to 5.3 4.3 3.0 to 5.4 

 
Table 10.27: Projected changes in extreme temperature percentiles (ON) 

ON Absolute changes (SSP5-8.5) compared to historical period (oC) 

 95th Percentile 99.9th Percentile 

 Mean Range Mean Range 

Mid century 1.9 1.3 to 2.6 2.1 1.5 to 2.8 

End century 4.5 3.3 to 6.0 4.7 3.3 to 6.3 

 
Table 10.28: Projected changes in extreme temperature percentiles (JJAS) 

JJAS Absolute changes (SSP5-8.5) compared to historical period (oC) 

 95th Percentile 99.9th Percentile 

 Mean Range Mean Range 

Mid century 1.8 1.3 to 3.0 2.0 1.5 to 3.3 

End century 4.5 3.3 to 6.0 4.5 3.0 to 6.3 

 

 

 



 
Figure 10.9: Changes in 95th and 99.99th daily maximum temperature percentile amounts for annual and various seasons from 

the 2-km bias-adjusted SINGV-RCM simulations during the mid- (left) and end-century (right) for SSP5-8.5. Percentiles are 

calculated after pooling all Singapore grid points. The line and diamond represent the mean and median using the 5 models, 

respectively. For readability, the values are available in Tables 10.23-10.28. 

 
Temperature extremes of location can also be 
estimated using the monthly maximum of daily 
maximum temperatures (TXx) and monthly 
minimum of daily minimum temperatures (TNn). 
Figure 10.10 shows the multi-model mean 
projections of TXx over Singapore across annual 
and monthly timescales under the SSP5-8.5 
scenario. As seen in Figure 10.10, the TXx is 
expected to increase on annual and monthly 
timescales in the end-century. The annual 
projections of TXx show an increase in a range of  

3.3 to 4.6oC with higher range (4.4 to 4.6oC) in the 
western part of Singapore.  

During the northeast monsoon season, for the 
Dec-Jan months, the TXx increases in a range of 
3.2 to 4.2oC over Singapore with around 0.4oC 
lower in the eastern part. For the Feb-Mar months, 
the TXx tends to rise in a range of 3.4 to 4.8oC with 
higher values over western, central and northern 
parts.  

 



 
Figure 10.10: Ensemble mean (5 bias-adjusted 2km downscaled GCMs) change in monthly maximum of daily maximum 

temperature (TXx) for annual, December–January, February–March, April–May, June–July–August–September, and October–

November during the end-century (2080–2099) period relative to the baseline (1995–2014) over Singapore under the SSP5-8.5 

scenario. 

 
During intermonsoons, for the Apr-May months, 
the TXx is projected to increase between 3.2 to 
4.2oC. For the Oct-Nov months, the TXx is 
projected to increase in a range of 4.0 to 5.0oC 
over Singapore. 

During the southwest monsoon season (Jun-
Sep), the TXx is projected to increase between 3.4 
to 4.8oC with a higher increase in the northern part 
of Singapore. According to the projections of TXx, 

Oct-Nov are the months with the highest increase 
throughout Singapore during the end-century.  

The TXx is expected to increase by 3.0 to 5.0oC 
with warming across Singapore at annual and 
seasonal time scales with higher increases over 
the northern, central, and western parts of 
Singapore. Projections for very hot days and 
warm nights are shown in Appendix C.

 



 
Figure 10.11: Ensemble mean (5 bias-adjusted 2km downscaled GCMs) change in monthly minimum of daily minimum 
temperature (TNn) for annual, December–January, February–March, April–May, June–July–August–September, and October–
November during end-century (2080–2099) period relative to the baseline (1995–2014) over Singapore under the SSP5-8.5 
scenario. 
 

Figure 10.11 shows the multi-model mean 
projections of TNn across Singapore in the end-
century under the SSP5-8.5 scenario. TNn is 
projected to increase on annual and monthly 
timescales across Singapore towards the end 
century under a very high emission scenario. The 
annual projections of TNn show an increase of 3.4 
to 4.2oC.  

During the northeast monsoon season, for Dec-
Jan months, the TNn is projected to increase 
between 3.2 to 4.0oC across Singapore. For the 
Feb-Mar months, the TNn is projected to increase 
between 3.4 to 4.2oC.  

During intermonsoons, for the Apr-May months, 
the TNn is projected to increase in a range of 3.6 
to 4.8oC. For the Oct-Nov months, the TNn is 
projected to increase between 3.4 to 4.2oC.  

During the southwest monsoons (Jun-Sep), the 
TNn is projected to increase between 4.0 to 5.0oC. 
In the end century, the TNn is projected to 
increase (3.2 to 5.0oC) across Singapore with 
higher increases over the Jun-Sep season (4.2 to 
5.0oC).  

Overall, the TNn is projected to increase by 3.0-
5.0oC across Singapore at annual and seasonal 



time scales with higher increases (>4.0oC) during 
the southwest monsoon season. 

 

10.6 Changes in Heat Stress Index 

According to the factsheet on Heat and Health by 
the UN World Health Organization, population 
exposure to heat is increasing due to climate 
change, and this trend will continue. In the 
backdrop of global warming, heat stress is 
becoming an increasingly important topic around 
the world, including Singapore. Although there are 
various metrics that can be used as indicators of 
heat stress, in this report we use the Wet Bulb 
Globe Temperature (WBGT) as a heat stress 
indicator and assess the future change in this 
indicator under 3 SSP scenarios for the mid- and 
end-century. Based on the hourly near-surface air 
temperature, wind speed, relative humidity and 

 net incoming solar radiation, we used Liljegren’s 
model (Liljegren, 2008) to obtain the hourly WBGT 
and select the daily maximum WBGT as the heat 
stress indicator. The WBGT is calculated as the 
weighted sum of the natural wet bulb temperature 
Tw, the globe temperature Tg, and the dry bulb 
temperature Tas: 

𝑊𝐵𝐺𝑇 =  0.7 𝑇𝑤 + 0.2 𝑇𝑔 +  0.1 𝑇𝑎𝑠 

Figure 10.12 shows the multi-model projections of 
WBGT under three SSP scenarios in the mid 
century and end century. As seen in Figure 10.12, 
the daily maximum WBGT is projected to increase 
with warming across Singapore at annual (Table 
10.29) and seasonal time scales (Table 10.29-
10.33). Towards the end of the current century, 
the annual mean daily maximum WBGT can 
increase by 0.5oC (SSP1-2.6) to 4.0oC (SSP5-
8.5).   

Table 10.29: Projected changes in annual mean daily maximum WBGT 

ANN Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 0.8 0.5 to 1.1 0.9 0.5 to 1.3 

SSP2-4.5 1.0 0.7 to 1.4 1.7 1.2 to 2.2 

SSP5-8.5 1.4 1.0 to 1.8 3.3 2.3 to 4.0 

 
Table 10.30: Projected changes in DJ mean daily maximum WBGT 

DJ Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 0.8 0.6 to 1.0 0.9 0.6 to 1.3 

SSP2-4.5 0.9 0.6 to 1.1 1.7 1.1 to 2.1 

SSP5-8.5 1.3 0.9 to 1.8 3.1 2.1 to 3.8 

 
Table 10.31: Projected changes in FM mean daily maximum WBGT 

FM Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 0.6 0.3 to 1.0 0.8 0.4 to 1.2 

SSP2-4.5 1.0 0.7 to 1.3 1.4 1.0 to 1.9 

SSP5-8.5 1.3           0.9 to 1.6 2.9 2.0 to 3.8 

 
Table 10.32: Projected changes in AM mean daily maximum WBGT 

AM Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 0.8 0.4 to 1.1 0.9 0.4 to 1.3 

SSP2-4.5 1.1 0.6 to 1.5 1.8 1.1 to 2.3 

SSP5-8.5 1.3 0.8 to 1.8 3.2 2.1 to 4.1 

Table 10.33: Projected changes in ON mean daily maximum WBGT 

ON Mid-Century (oC) End-Century (oC) 



 Mean Range Mean Range 

SSP1-2.6 0.9 0.5 to 1.2 1.0 0.5 to 1.5 

SSP2-4.5 1.0 0.6 to 1.4 1.8 1.3 to 2.4 

SSP5-8.5 1.8 1.3 to 2.4 3.4 2.4 to 4.1 

 

 
Figure 10.12: Change in daily maximum wet-bulb globe temperature (WBGT) for annual, December–January, February–March, 
April–May, June–July–August–September, and October–November during mid- (2040–2059) and end-century (2080–2099) 
periods from the 5 bias-adjusted downscaled GCMs (2 km) over Singapore relative to the baseline (1995–2014). The line and 
thin diamond represent the mean and median over the 5 models, respectively.For readability, the values are available in Tables 
10.29-10.34. 

 

Table 10.34: Projected changes in JJAS mean daily maximum WBGT 

JJAS Mid-Century (oC) End-Century (oC) 

 Mean Range Mean Range 

SSP1-2.6 0.9 0.6 to 1.1 1.0 0.5 to 1.3 

SSP2-4.5 1.1 0.8 to 1.4 1.9 1.3 to 2.4 

SSP5-8.5 1.5 1.0 to 1.8 3.5 2.6 to 4.2 

 

In the baseline period from 1995-2014, the climate 
models predict an annual average of 35.9 days 
featuring maximum WBGT above 33oC, ranging 
from 20.5 to 57.2 days among various models. 
Looking ahead, the number of days with WBGT 
surpassing this critical threshold is projected to 
rise significantly. By mid-century, under the 
scenarios of SSP1-2.6, SSP2-4.5 and SSP5-8.5 

scenarios, we anticipate 74.9 days (ranging from 
52.8 to 111.8), 87.2 days (ranging from 60.5 to 
131.2), and 112.7 days (ranging from 85.8 to 
154.6), respectively. The frequency of days 
exceeding WBGT of 33oC escalates even further, 
reaching 80.7 days (ranging from 54.4 to 134.6) 
for SSP1-2.6, 141.5 days (ranging from 107 to 
204.7) for SSP2-4.5, and 269.6 days (ranging 



from 207.4 to 326.1) SSP5-8.5. The projections 
underscore the growing heat stress challenges 
that lie ahead in Singapore, which requires 
proactive preparation for the intensified risk of 
heat-related illness, potential shortage of 
healthcare resources, and the threats to economic 
stability in industrial sectors relying on outdoor 
labors and tourism.  

Figure 10.12 shows the spatial changes in the 
ensemble mean of monthly maximum WBGT 
across Singapore in the mid-century and end 

century under the SSP5-8.5 scenario compared to 
the historical period. The WBGT is expected to 
rise with warming at both annual and seasonal 
time scales over Singapore in a range of 2.8 to 
3.8oC.  The southwest monsoon season (July to 
September) has higher WBGT increases (3.5 to 
3.8oC) and the dry phase of the northeast 
monsoon season increases WBGT in the range of 
2.8 to 3.0oC. Overall the heat stress (WBGT) 
which is projected to increase across Singapore in 
the future warmer climate can thereby influence 
the socio-economic conditions across the nation. 

 

 
Figure 10.12: Ensemble mean (5 bias-adjusted 2km downscaled GCMs) change in monthly maximum WBGT for annual, 
December–January, February–March, April–May, June–July–August–September, and October–November during end-century 
(2080–2099) period relative to the baseline (1995–2014) over Singapore under the SSP5-8.5 scenario. 

10.7 Changes in 10m relative humidity Relative humidity is expressed as a percentage 
and is a measure of how saturated the air is. It 



includes the combined effect of temperature and 
water vapour in the air. In simple terms, it is an 
indicator of how much water vapour the air 

contains compared to the maximum it could 
contain at a given temperature and pressure. 

 

 
Figure 10.13: Change in mean relative humidity (hurs) for annual, December–January, February–March, April–May, June–July–

August–September, and October–November during mid- (2040–2059) and end-century (2080–2099) periods for the 5 bias-

adjusted downscaled GCMs (2 km) over Singapore relative to the baseline (1995–2014). The line and thin diamond represent 

the mean and median over the 5 models, respectively. For readability, the values are available in Tables 10.35-10.40. 

 
With increase in temperature, the amount of water 
vapour in the air is expected to increase. This is 
because of the Clausius-Clapeyron (CC) 
equation, which implies that the air can generally 
hold around 7% more moisture for every 1oC 
increase in air temperature. Therefore, under 
global warming, for the relative humidity to be 
constant the water vapour content in the air should 
increase at the same rate i.e., 7% increase for 
every 1oC increase in air temperature. However, 
from Singapore’s observation records we find that 
there is a decreasing trend in relative humidity. 
This also matches with what was projected in V2. 
The reasons for this is (1) there is a limited supply 
of moisture in the land unlike oceans, and (2) the 
land surface has been warming at a faster rate 
than oceans. Hence, neither the local evaporation 

over land, nor the advected moisture from the 
oceans is enough to increase the water vapour 
over land at the CC rate. 

Figure 10.13 shows the multi-model mean 
projections of RH under three SSP scenarios in 
the mid and end century at annual and seasonal 
time scales. As seen in Figure 10.13, the RH is 
projected to decrease over Singapore at annual 
and seasonal time scales in mid century and end 
century. Towards the end of the century, the 
annual mean RH is projected to decrease by 0.5% 
(SSP1-2.6) to 1.9% (SSP5-8.5). When compared 
to other seasons, the northeast monsoon dry 
phase (Feb-Mar) project decreased RH by 1.2% 
(SSP1-2.6) and 2.6% (SSP5-8.5) in the end 
century. Additionally, the projected changes in RH 

http://www.int-res.com/articles/cr_oa/c047p123.pdf


during the dry phase of the northeast monsoon 
show significant inter-model variation.

 
 
Table 10.35: Projected changes in annual mean RH 

ANN Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 -0.4 -0.6 to 0.0 -0.5 -1.2 to -0.1 

SSP2-4.5 -0.6 -1.2 to -0.1 -0.9 -2.0 to -0.5 

SSP5-8.5 -0.4 -1.3 to 0.4 -1.9 -3.6 to -1.0 

 
Table 10.36: Projected changes in DJ mean RH 

DJ Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 -0.3 -1.1 to 0.2 -0.4 -1.5 to 1.1 

SSP2-4.5 -0.9 -2.1 to 0.5 -0.7 -1.9 to 0.8 

SSP5-8.5 -0.1 -1.3 to 0.7 -1.9 -3.6 to 0.4 

 
Table 10.37: Projected changes in FM mean RH 

FM Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 -1.1 -2.1 to 0.0 -1.2 -2.0 to -0.2 

SSP2-4.5 -1.3 -3.1 to 0.5 -1.8 -3.3 to 0.1 

SSP5-8.5 -0.7 -2.5 to 0.8 -2.6 -5.3 to 0.7 

 
Table 10.38: Projected changes in AM mean RH 

AM Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 0.2 -0.6 to 0.9 -0.5 -1.1 to 0.2 

SSP2-4.5 -0.2 -1.2 to 0.9 -0.5 -1.3 to 0.4 

SSP5-8.5 -0.1 -0.9 to 1.2 -0.8 -1.1 to -0.3 

 
Table 10.39: Projected changes in ON mean RH 

ON Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 -0.3 -0.7 to 0.7 -0.5 -1.3 to 0.4 

SSP2-4.5 -0.4 -0.8 to 0.6 -0.8 -1.7 to 0.7 

SSP5-8.5 -0.6 -1.3 to 0.7 -2.2 -3.9 to 0.3 

 
Table 10.40: Projected changes in JJAS mean RH 

ANN Mid-Century (%) End-Century (%) 

 Mean Range Mean Range 

SSP1-2.6 -0.5 -1.2 to 0.7 -0.5 -1.3 to 0.4 

SSP2-4.5 -0.4 -1.4 to 0.6 -0.9 -2.2 to 0.1 

SSP5-8.5 -0.4 -1.6 to 0.3 -2.0 -3.8 to -0.6 

 

 

10.8 Changes in 10m wind speed 



This section presents the annual cycle of mean 
surface wind speeds in the historical and 2 km 
downscaled SINGV simulations under the SSP5-
8.5 scenario in the mid and end century. We also 
present the projected changes in the mean 
surface wind speed for three SSP scenarios at 
annual and seasonal time scales in mid and end 
century. 

Figure 10.14 shows the annual cycle of surface 
wind speeds over Singapore during historical, 

mid-century (SSP5-8.5), and end-century (SSP5-
8.5). In all three time periods, the annual cycle 
comprises higher wind speeds in the northeast 
and southwest monsoon seasons and lower wind 
speeds in the intermonsoon seasons. Relative to 
the historical simulations, there is not much 
change in the mid-century for most of the year, but 
by the end of the century, the mean surface wind 
speeds exceed those of historical throughout the 
year, especially in Jan-Sep, where there is high 
model agreement on the increases.  

 

 
Figure 10.14: Annual cycle of historical and future winds under mid- (left) and end-century (right).  
 

Projected changes in surface wind speed for mid- 
and end-century under the 3 SSP scenarios are 
shown in Figure 10.15. As seen in the figure, 
projected mean surface wind speed changes over 
Singapore varies on annual (Table 10.41) and 
monthly scales (Table 10.42-10.46). At annual 
time scales, the mean wind speeds are projected 

to increase by 0.1 m/s (SSP1-2.6) to 0.37 m/s 
(SSP5-8.5). Under the SSP5-8.5 scenario, the 
northeast monsoon and southwest monsoon 
seasons are projected to experience greater 
increases in mean wind speeds in the end of the 
century. 

 
Table 10.41: Projected changes in annual mean 10m wind speed 

ANN Mid-Century (m/s) End-Century (m/s) 

 Mean Range Mean Range 

SSP1-2.6 0.10 0.02 to 0.16 0.10 0.0 to 0.17 

SSP2-4.5 0.12 0.03 to 0.19 0.19 0.09 to 0.28 

SSP5-8.5 0.10 -0.03 to 0.24 0.37 0.23 to 0.51 

 
Table 10.42: Projected changes in DJ mean 10m wind speed 

DJ Mid-Century (m/s) End-Century (m/s) 

 Mean Range Mean Range 



SSP1-2.6 0.03 -0.05 to 0.20 0.09 -0.06 to 0.22 

SSP2-4.5 0.14 -0.02 to 0.31 0.16 0.00 to 0.36 

SSP5-8.5 0.08 -0.05 to 0.22 0.38 0.09 to 0.80 

 
Table 10.43: Projected changes in FM mean 10m wind speed 

FM Mid-Century (m/s) End-Century (m/s) 

 Mean Range Mean Range 

SSP1-2.6 0.18 0.00 to 0.43 0.14 -0.02 to 0.33 

SSP2-4.5 0.16 0.01 to 0.33 0.33 0.07 to 0.54 

SSP5-8.5 0.10 -0.10 to 0.33 0.45 0.21 to 0.70 

 

 
Figure 10.15: Changes in mean 10m wind speed for annual, December–January, February–March, April–May, June–July–
August–September, and October–November during mid- (2040–2059) and end-century (2080–2099) periods for the 5 bias-
adjusted downscaled GCMs (2 km) over Singapore relative to the baseline (1995–2014). The line and thin diamond represent 
the mean and median over the 5 models, respectively. For readability, the values are available in Tables 10.41-10.46. 

 
Table 10.44: Projected changes in AM mean 10m wind speed 

AM Mid-Century (m/s) End-Century (m/s) 

 Mean Range Mean Range 

SSP1-2.6 0.06 -0.02 to 0.13 0.10 0.03 to 0.20 

SSP2-4.5 0.04 -0.06 to 0.12 0.10 0.03 to 0.18 

SSP5-8.5 0.05 -0.05 to 0.10 0.25 0.16 to 0.32 

 
Table 10.45: Projected changes in ON mean 10m wind speed 

ON Mid-Century (m/s) End-Century (m/s) 

 Mean Range Mean Range 



SSP1-2.6 0.02 -0.16 to 0.11 0.0 -0.06 to 0.04 

SSP2-4.5 0.05 -0.11 to 0.10 0.01 -0.19 to 0.09 

SSP5-8.5 0.02 -0.20 to 0.18 0.16 -0.13 to 0.31 

 
Table 10.46: Projected changes in JJAS mean 10m wind speed 

JJAS Mid-Century (m/s) End-Century (m/s) 

 Mean Range Mean Range 

SSP1-2.6 0.16 0.03 to 0.27 0.14 0.05 to 0.27 

SSP2-4.5 0.17 0.03 to 0.28 0.26 0.10 to 0.44 

SSP5-8.5 0.19 0.03 to 0.34 0.49 0.36 to 0.72 

 

10.9 Changes in Wind Gusts 

In this section, we present the projected changes 
in daily maximum wind gust under warming. 
Strong wind gusts are often associated with 
thunderstorms and squall lines and can potentially 
cause substantial damage to Singapore’s 
infrastructure (buildings and roads), uprooting of 
trees, and threat to the safety of human beings. 
While in V2, due to the use of a coarser spatial 
resolution model (12km grid size), thunderstorms 
and squall lines could not be simulated well. 
Hence, wind gust changes were projected using a 
single model run at 1.5km resolution for the last 
decade of the 21st century for the RCP8.5 
scenario. In V3 there is a significant improvement 

in the simulation of the processes causing strong 
wind gusts due to the use of an advanced 
numerical model (SINGV-RCM) and higher 
resolution (2km), and we have more confidence in 
the wind gust projections. 

Figure 10.16 shows the spatial distribution of 
multi-model mean of the percentages changes in 
the wind gust speed in the mid- and end-century 
from the 2 km simulations under SSP5-8.5. It can 
be seen from the figure that the increase in mid-
century is less than 3%, and that during the end-
century is less than 10%. This is consistent with 
the projections from V2 that showed a future end-
century increase under RCP8.5 by 5-10%.

 

 
Figure 10.16: Ensemble mean (5 bias-adjusted 2km downscaled GCMs) percentage change in wind gust (10m daily maximum 
wind speed) during mid- (2040–2059) and end-century (2080–2099) relative to the baseline (1995–2014) over Singapore under 
SSP5-8.5 scenario. 
 
 
 
 
 
 
 

10.10 Comparison of 2km and 8km 
Projections 

In this section we compare the projections of 
rainfall and temperature over Singapore from the 



bias-adjusted 8km and 2km downscaled 
simulations. For brevity, we present results only 

for temperature and rainfall and for the SSP5-8.5 
scenario. 

 

 
Figure 10.17: The two SINGV-RCM grids over the Singapore region. (Left) 2-km grid. (Right) 8-km grid. 
 

 

While we are making this comparison only over 
Singapore (25 grid points in the 8km model and 
286 grid points in the 2km model), results over the 
broader region could be more similar due to the 
fact that the 8km model provides the driving 
conditions and hence large-scale constraints for 
the 2km simulations. Also, the 2km simulations 
can better resolve some of the local climate 
drivers such as squall lines, thunderstorms, and 
land-sea breeze circulation, so we would expect 
improved rainfall projections, especially extremes. 

The multi-model annual and seasonal mean 
rainfall and temperature projections over 
Singapore using 2 km and 8 km downscaled GCM 
simulations during the end century under SSP5-
8.5 scenario were analysed (figures in Appendix 
A). It was found that the 2 km and 8 km projections 
largely agree both in magnitude and spatial 
pattern, although one may find small local 
variations and higher spatial granularity in the 2 
km simulations due to the higher resolution. 
Although the local variations may appear small, 
aggregated together in space they could lead to 
larger differences between the 8 km and the 2 km 
projections. For example, as can be seen in Fig 
A10.3, the percentage change in 99.9th percentile 
projected in the 8 km simulations is ~10% 
whereas that in the 2 km projections is ~40%. 

 

10.11 Summary 

This chapter uses bias-adjusted projections of 6 
CMIP6 GCMs downscaled by SINGV-RCM to 
examine climate change over Singapore. The 
results are presented for both annual and 
seasonal scales, using periods corresponding to 
Singapore’s monsoon and intermonsoon 
seasons. Changes in rainfall, temperature, wet 
bulb globe temperature as a measure of what 
stress, relative humidity, and near-surface winds 
and wind gusts are presented.  

Multi-model annual mean rainfall is projected to 
remain the same or increase by the end of the 
century over Singapore (11% across scenarios), 
although there are individual models that project 
reductions in rainfall. Similar to the regional case, 
the changes in annual means are not uniformly 
distributed over seasons. In the case of SSP5-8.5, 
by the end-century, there are signs of greater 
contrasts between the wet (e.g. Dec-Jan), and dry 
(e.g. Feb-Mar, Jun-Sep), or a ‘wet-get-wetter’ and 
‘dry-get-drier’ type behavior.  

In the end of the century under SSP5-8.5, there 
are generally increases in precipitation extremes 
as measured by annual maximum 1-day and 5-
day precipitation (RX1day and RX5day) of up to 
50% across different seasons. The main 
exception is Feb-Mar, where large parts of 
Singapore show a decrease in both RX1day and 
RX5day. Models project an increase across 
seasons in the 99.9th percentile of rainfall in both 
mid-century and end-century in SSP5-8.5. The 
multi-model mean length of dry spells (measured 
by consecutive dry days) increases in all 



scenarios in both the mid-century and end-century 
periods. 

Annual mean near-surface air temperatures are 
projected to increase in a range of 0.6-5.0oC by 
the end of the century under SSP5-8.5. Models 
robustly agree on an increase in temperature 
across all seasons, with all seasons showing 
similar increases in temperature. Annual mean 
daily maximum temperatures are also projected to 
increase across models, with a range of 0.5-
5.3oC. Annual average daily mean wet-bulb globe 
temperature is projected to increase in the range 
of 0.5-4.3oC. There is also a decrease in multi-
model mean near-surface relative humidity. The 
reduction in relative humidity has a compensating 
effect on enhanced heat stress under warming.  

No major changes are expected in wind-related 
variables. Changes in near-surface winds are 
generally small (within 1 m/s). By the end of the 
century, the multi-model mean winds are 

expected to increase in all seasons under SSP5-
8.5. Changes in wind gusts are expected to be 
within 10% under SSP5-8.5, even up till the end 
of the century. 

A discussion of the comparison of the 2km and 
8km simulations indicate that the spatial pattern 
simulated by the model at the two resolutions are 
broadly similar, but the differences can lead to 
noticeable differences in domain-wide statistics. 
In this case, we would tend to trust the 2km model, 
which at a higher resolution is better able to 
resolve key physical processes which drive and 
organize convection.  

In summary, the models predict increases in 
temperature and heat stress over Singapore, 
together with greater variability of rainfall and 
rainfall extremes. This includes greater 
occurrences and duration of drought conditions, 
as well as increases in extreme rainfall.
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Appendix A - Comparison of 
Rainfall and Temperature 
Changes in the 8km and 2km 
projections 

 

Rainfall 

Figure A10.1 shows the spatial mean projections 
of daily mean and extreme rainfall percentiles over 
Singapore in the mid and end century on annual 
and seasonal time scales. 

For the Dec-Jan months, the mid-century 
projections of mean rainfall show an increase of 
17% and extreme rainfall percentiles increase with 
a range of (12-40%). In the end century, the daily 
mean rainfall projections show an increase of 10% 
and extreme rainfall increase with a range of (11-
35%). During the Feb-Mar months, in the mid-
century the mean rainfall increases by 25% and 
extreme rainfall shows an increasing trend with a 
range of (0-38%). In the end century, the 
projections of the mean rainfall shows neutral 

changes and extreme rainfall varies with a range 
of (-20-15%). 

During the Apr-May months, the projections of 
daily mean rainfall increases by 5% and extreme 
rainfall rises with a range of (3-20%). In the end 
century, the mean rainfall increases by 17% and 
extreme rainfall increases with a range of 0-50%. 
For the Jun-Sep period, the mid-century 
projections of the mean show an increase of 5% 
and extreme rainfall varies with a range of (-4-
30%). In the end century, mean rainfall increases 
by 15% and extreme rainfall projections vary with 
a range of (-4 to 26%).  

During the Oct-Nov months, in the mid-century 
mean rainfall increases by 9% and extreme 
rainfall increases with a range of (5-26%). Over 
the end century, mean rainfall rises by 14% and 
extreme rainfall enhances with a range of (5-
60%). These results suggest that there are 
variations in the projections of the daily mean and 
extreme rainfall of Singapore in the mid-century 
and the end century across annual and monthly 
timescales. 

 

 

 



 

 



 

 
Figure A10.1: Range of percentage changes in mean and extreme daily rainfall percentile amounts for various seasons 
(December-January, wet NE monsoon; February-March, dry NE monsoon; April-May, first intermonsoon; June-September; SW 
monsoon) from the 2-km SINGV-RCM simulations over Singapore. The median value in the range of percentage changes for 
each percentile is denoted by the dark red horizontal line. Rainfall percentiles are based on wet days only (defined as any day 
when rainfall >= 1mm/day); each percentile uses the nearest corresponding daily rainfall value. 
 

As seen in Figure A10.2 the mean and extremes 
are projected to rise in the mid-century but with a 
higher magnitude in the end century. 

Temperature  

For the Dec-Jan months, the daily maximum 
mean temperatures are expected to increase by 
1.4 degrees and extremes increase with a range 
of 1.3  to 1.7 degrees in the mid century. In the 
end century, the mean daily maximum 



temperatures are projected to increase by 3.6 
degrees and extremes increase with a range of 
3.6 to 4.4 degrees. During Feb-Mar months, in the 
mid-century the mean daily maximum 
temperatures are projected to increase by 1.5 
degrees and extremes increase with a range of 
1.4 to 1.8 degrees. In the end century, the mean 
temperatures are projected to increase by 3.5 
degrees and extremes increase with a range of 
3.5 to 4.2 degrees.  

During the Apr-May months, the mean 
temperatures are expected to increase by 1.6 
degrees and extremes increase with a range of 
1.6 to 1.8 degrees. In the end century the mean 
temperatures are projected to rise by 3.6 degrees 

and extremes increase with a range of 3.6 to 4.1 
degrees. For the Jun-Sep period, in the mid-
century the mean temperatures are expected to 
rise by 1.6 degrees and extremes increase with a 
range of  1.5 to 1.7 degrees. In the end century, 
the mean temperatures projected to increase by 
4.1 degrees and extremes increase with a range 
4.1 to 4.4 degrees.  

During the Oct-Nov months, in the mid-century the 
mean temperatures are projected to increase by 
1.6 degrees and extremes increase with a range 
of 1.5 to 1.9 degrees. In the end century, the mean 
temperatures are expected to rise by 4 degrees 
and extremes increase with a range of 4.0 to 4.5 
degrees. 

 

 



 

 
 



 
 

 
Figure A10.2: Range of changes in mean and extreme daily maximum temperature percentile amounts for various seasons 
(December-January, wet NE monsoon; February-March, dry NE monsoon; April-May, first intermonsoon; June-September; SW 
monsoon) from the 2-km SINGV-RCM simulations over Singapore. The median value in the range of percentage changes for 
each percentile is denoted by the dark red horizontal line. Each percentile uses the nearest corresponding daily maximum 
temperature value. 

 
Figure A10.3 shows the projected changes of 
daily mean and extreme rainfall percentiles for 
Dec-Jan months over Singapore using 2 km and 
8 km downscaled simulations in mid-century and 

end century. In a 2km simulation, the mid-
century’s mean rainfall increased by 18% and 
extreme rainfall increased in the range of 15-35%. 
The mid-century mean rainfall from 8 km 



simulation increased by 8% and extreme rainfall 
increased in the range of 3-20%. According to a 2 
km simulation, the average rainfall increased by 
10% at the end of the century, while extreme 
rainfall increased by 10% to 40%. In the end 
century from the 8 km simulations, the mean 

rainfall increased by 3% and extreme rainfall 
varied in the range of -18 to 22%. During Dec-Jan 
months, the 2 km simulation had higher 
percentage increases in the mid and end century 
mean and extreme rainfall than the 8 km 
simulation.  

 
Fig A10.3: Changes in Singapore average daily rainfall amount during December - January (wet phase of NE monsoon) for the 
mid-century (2040-2059; top row) and end-century (2080-2099; bottom row) periods from SINGV-RCM downscaled simulations 
at 2-km (left) and 8-km (right). Shown are the percentage changes in the mean and at different percentiles (50th, 90th, 95th, 
99th and 99.9th) under the SSP5-8.5 scenario. The mean and percentile values are derived only from wet days (rainfall >= 
1mm/day); each percentile uses the nearest corresponding daily rainfall value. 

 
 



Figure A10.4 shows the projected changes of 
daily mean and extreme rainfall percentiles for 
Feb-Mar months over Singapore using 2km and 
8km downscaled simulations in mid-century and 
end century. In the mid-century, the 2km 
simulation showed that mean rainfall increased by 
25% and extreme rainfall increased in the range 
of 0-38%.  In the 8 km simulation, the mid-
century’s mean rainfall increased by 25% and 
extreme rainfall increased in the range of 5-45%. 

In the end century, the mean rainfall remained 
neutral and extreme rainfall varied in the range of 
-18 to 17% from 2 km simulation. The mean 
rainfall in the end century from the 8 km 
simulations remained unchanged whereas 
extreme rainfall varied in the range of -18 to 25%. 
The 2 km and 8 km simulation’s mean and 
extreme rainfall projections often vary by almost 
the same amount for the months of February and 
March.  

 

 
Figure A10.4: As in Figure A10.3 but for February - March (Dry phase of NE monsoon). 

 
Figure A10.5 shows the projected changes of 
daily mean and extreme rainfall percentiles for 
Apr-May months over Singapore using 2 km and 
8 km downscaled simulations in mid-century and 
end century. In a 2km simulation, the mid-
century’s mean rainfall increased by 5% and 
extreme rainfall increased in the range of 4-20%. 
The mid-century mean rainfall from 8 km 

simulation increased by 5% and extreme rainfall 
increased in the range of 0-15%. According to a 2 
km simulation, the average rainfall increased by 
18% at the end of the century, while extreme 
rainfall increased by 0- 50%. In the end century 
from the 8 km simulations, the mean rainfall 
increased by 15% and extreme rainfall increased 
in the range of 0 to 25%. During Apr-May months, 



the 2 km simulation had higher percentage 
increases in the mid and end century extreme 
rainfall than the 8 km simulation.  
 

 
Figure A10.5: As in Figure A10.3 but for April-May 

 

Figure A10.6 shows the projected changes of 
daily mean and extreme rainfall percentiles for 
Jun-Sep period over Singapore using 2km and 
8km downscaled simulations in mid-century and 
end century. In the mid-century, the 2km 
simulation showed that mean rainfall increased by 
2% and extreme rainfall varied in the range of -2 
to 30%.  In the 8 km simulation, the mid-century’s 
mean rainfall increased by 1% and extreme 

rainfall varied in the range of -2 to 15%. In the end 
century, the mean rainfall increased by 15% and 
extreme rainfall varied in the range of -2 to 25% 
from 2 km simulation. The mean rainfall in the end 
century from the 8 km simulations increased by 
13% whereas extreme rainfall varied in the range 
of 0 to 20%. Similar to the Apr-May months, the 2 
km simulation has higher percentage changes in 
the extreme rainfall than the 8 km simulation. 

 



 
Figure A10.6: As in Figure A10.3 but for June - September (SW monsoon period). 

 

Figure A10.7 shows the projected changes of 
daily mean and extreme rainfall percentiles for 
Oct-Nov months over Singapore using 2 km and 8 
km downscaled simulations in mid-century and 
end century. In a 2km simulation, the mid-
century’s mean rainfall increased by 10% and 
extreme rainfall increased in the range of 5-25%. 
The mid-century mean rainfall from 8 km 
simulation increased by 17% and extreme rainfall 
increased in the range of 15-25%. According to a 

2 km simulation, the average rainfall increased by 
15% at the end of the century, while extreme 
rainfall increased by 5- 60%. In the end century 
from the 8 km simulations, the mean rainfall 
increased by 22% and extreme rainfall increased 
in the range of 10 to 55%. In contrast to the other 
months, in Oct-Nov months the 8 km simulation 
had higher percentage changes in the mean and 
extreme rainfall. 

 



 
Figure A10.7: As in Figure  A10.3 but for October-November (2nd intermonsoon) 

 

Temperature 
 
Figure A10.8 shows the projected changes of 
daily mean and extreme temperature percentiles 
for Dec-Jan months over Singapore using 2km 
and 8km downscaled simulations in mid-century 
and end century. In the mid-century, the 2km 
simulation showed that mean temperature is 
projected to increase by 1.3oC and extreme 
temperatures could increase in the range of 1.2oC 
to 1.7oC. In the 8 km simulations, in the mid-
century the mean temperature is projected to 

increase by 1.4oC and extreme temperature is 
projected to increase in the range of 1.4oC to 
1.7oC. In the end century, for the 2 km simulation 
the mean temperature is projected to increase by 
3.6oC and extreme temperature is projected to 
increase in the range of 3.6oC to 4.3oC. The mean 
temperature in the end century from the 8 km 
simulations is projected to increase by 3.4oC, 
whereas extreme temperature is projected to 
increase in the range of 3.4oC to 3.6oC. The mean 
and extreme temperature variations at the mid-
century and end-of-century time frames vary only 
slightly across 2 km and 8 km simulations. 



 
Figure A10.8: Changes in Singapore average daily maximum temperature during December - January (wet phase of NE 
monsoon) for the mid-century (2040-2059; top row) and end-century (2080-2099; bottom row) periods from SINGV-RCM 
downscaled simulations at 2-km (left) and 8-km (right). Shown are the percentage changes in the mean and at different 
percentiles (50th, 90th, 95th, 99th and 99.9th) under the SSP5-8.5 scenario. Each percentile uses the nearest corresponding 
daily maximum temperature value. 
 

Figure A10.9 shows the projected changes of 
daily mean and extreme temperature percentiles 
for Feb-Mar months over Singapore using 2 km 
and 8 km downscaled simulations in mid-century 
and end century. In the 2km simulations, the mid-
century mean temperature is projected to increase 
by 1.5oC and extreme temperature is projected to 
increase in the range of 1.4oC to 1.6oC. The mid-
century mean temperature from 8 km simulations 
is projected to increase by 1.3oC and extreme 

temperature is projected to increase in the range 
of 1.3oC to 1.6oC. Based on the 2 km simulations, 
the mean temperature is projected to increase by 
3.5oC at the end of the century, while extreme 
temperature is projected to increase in the range 
of 3.5oC - 4.3oC. In the end century, from the 8 km 
simulations, the mean temperature is projected to 
increase by 3.4oC and extreme temperature is 
projected to increase in the range of 3.4oC to 
3.8oC. 

 
 
 



 
Figure A10.9: As in Figure  A10.8 but for February - March (Dry phase of NE monsoon). 

 

Figure A10.10 shows the projected changes of 
daily mean and extreme temperature percentiles 
for Apr-May months over Singapore using 2km 
and 8km downscaled simulations in mid-century 
and end century. In the mid-century, the 2km 
simulation showed that mean temperature is 
projected to increase by 1.3oC and extreme 
temperature is projected to increase in the range 
of 1.2oC to 1.7oC. In the 8 km simulation, the mid-
century’s mean temperature is projected to 

increase by 1.4oC and extreme temperature is 
projected to increase in the range of 1.4oC to 
1.7oC. In the end century, for the 2 km simulation 
the mean temperature is projected to increase by 
3.6oC and extreme temperature is projected to 
increase in the range of 3.6oC to 4.3oC. The mean 
temperature in the end century from the 8 km 
simulations is projected to increase by 3.4oC, 
whereas extreme temperature is projected to 
increase in the range of 3.4oC to 3.6oC.  



 
 
Figure A10.10: As in Figure 10.8 but for April-May 

 
Figure A10.11 shows the projected changes in 
daily mean and extreme temperature percentiles 
for Jun-Sep period over Singapore using 2 km and 
8 km downscaled simulations during mid-century 
and end century. Based on 2 km simulations, the 
mid-century’s mean temperature is projected to 
increase by 1.6oC and extreme temperature is 
projected to increase in the range of 1.6oC to 
1.8oC. The mid-century mean temperature, from 8 
km simulations is projected to increase by 1.5oC 

and extreme temperature is projected to increase 
in the range of 1.5oC to 1.6oC. Based on 2 km 
simulations, the mean temperature is projected to 
increase by 4.1oC at the end of the century, while 
extreme temperature is projected to increase in 
the range of 4.1oC - 4.4oC. In the end century, from 
the 8 km simulations, the mean temperature is 
projected to increase by 3.7oC and extreme 
temperature is projected to increase in the range 
of 3.7oC to 3.9oC. 

 



 
Figure A10.11: As in Figure A10.8 but for June - September (SW monsoon period). 

 

Figure A10.12 shows the projected changes of 
daily mean and extreme temperature percentiles 
for Oct-Nov months over Singapore using 2km 
and 8km downscaled simulations in mid-century 
and end century. In the mid-century, the 2km 
simulation showed that mean temperature is 
projected to increase by 1.6oC and extreme 
temperature is projected to increase in the range 
of 1.5oC to 1.9oC. In the 8 km simulations, the mid-
century’s mean temperature is projected to 
increase by 1.3oC and extreme temperature is 
projected to increase in the range of 1.3oC to 

1.7oC. In the end century, from the 2 km 
simulations the mean temperature is projected to 
increase by 4.0oC and extreme temperature is 
projected to increase in the range of 4.0oC to 
4.5oC. The mean temperature in the end century 
from the 8 km simulations is projected to increase 
by 3.4oC, whereas extreme temperature is 
projected to increase in the range of 3.4oC to 
4.1oC. Between 2 km and 8 km simulations, there 
are modest differences in the mean and extreme 
temperature changes at the mid-century and end-
of-century. 

 
 
 
 
 



 
Figure A10.12: As in Figure A10.8 but for October-November (2nd intermonsoon) 

 

 

 

  



Appendix B - Changes in winds over the WMC domain 

 
 
Figure B10.1: Changes in 850 hPa wind direction and climatological wind speeds (colors) in (a) DJF, (b) MAM, (c) JJA, (d) SON 
over Southeast Asia during 2080-2099 in SSP5-8.5 with respect to 1995-2014 in SINGV-MMM (containing five 2km model 
outputs). 

 



 
Figure B10.2:  As in Figure B10.1 but for near-surface winds.  
  



 

Appendix C – Changes in warm 
nights and very hot days 

C10.1 How will the annual occurrence 
of warm nights change? 

The frequency of occurrence of warm nights (daily 
minimum temperature equal to or exceeding 26.3 

°C) is projected to increase in the future. Based on 
the observations record, Singapore has around 76 
warm nights annually, and this number is 
projected to increase in the future, with warm 
nights becoming an everyday occurrence, by end-
century, under the high emissions scenario. 
Projected changes for the mid- and end-century 
for all SSPs are shown in Table C10.1.

Table C10.1: Observed and projected number of warm nights annually, during mid- and end-century under the 3 SSP scenarios. 

Scenario Number of warm nights annually 

Observations 76 nights 

Future Mid-Century End-Century 

SSP1-2.6 336 (317 to 352) 342 (312 to 361) 

SSP2-4.5 347 (327 to 360) 362 (360 to 365) 

SSP5-8.5 354 (335 to 364) 365 (365) 

 

C10.2 How will the annual occurrence 
of very hot days change? 

 

Very hot days are defined as days with daily 
maximum temperature exceeding 35 °C, based 
on the 99th percentile of daily maximum 
temperature. Historically, the average annual 
occurrence of very hot days are 21.4 days. 

 

The frequency of occurrence of very hot days is 
projected to increase in the future. Based on the 
observations record, Singapore has around 21 
very hot days annually, and this number is 
projected to increase in the future, with the worst 
case of almost every day being a very hot day by 
the end century under the high emissions 
scenario. Projected changes for the mid- and end-
century for all SSPs are shown in Table C10.2. 

 
Table C10.2: Observed and projected number of very hot days annually, during mid- and end-century under the three SSP 
scenarios. 

 

Scenario Number of very hot days annually 

Observed 21.4 days 

Future Mid-Century End-Century 

SSP1-2.6 73 (47 to 93) 85 (41 to 125) 

SSP2-4.5 95 (63 to 134) 173 (103 to 261) 

SSP5-8.5 129 (76 to 189) 305 (252 to 351) 
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11.1 Introduction 

The importance of uncertainty in climate change 
projections and its communication to stakeholders 
is well recognised by the IPCC as can be seen 
from the assessment reports. Uncertainty in 
regional climate change projections further 
cascades to uncertainties in impacts (hydrology, 
agriculture, etc.), and it gives a hard time to the 
decision makers to come up with necessary 
adaptation measures, as the adaptation plans and 
corresponding costs can significantly be affected 
due to these uncertainties. Hence, there are 
efforts by the scientific community to reduce 

uncertainty in climate change projections to the 
extent possible.  

With regard to the communication of uncertainty 
to stakeholders, the IPCC AR6, similar to AR5, 
uses a “calibrated language” in various 
statements published in the reports. The 2 terms 
that are used to communicate uncertainty in the 
IPCC reports are “confidence” and “likelihood”. 
IPCC uses a rather detailed methodology to 
assess and communicate uncertainty as can be 
seen in Figure 11.1 taken from the AR6 WG-I 
report. 

 

 
Figure 11.1: The IPCC AR6 approach for characterizing understanding and uncertainty in assessment findings. This diagram 
illustrates the step-by-step process authors use to evaluate and communicate the state of knowledge in their assessment 
(Mastrandrea et al., 2011). Box 1.1, Fig. 1, IPCC AR6.  
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11.2 Sources of uncertainties in 
Climate Change Projections 

There are 3 distinct sources of uncertainty in 
global climate change projections - (1) internal 
variability uncertainty, (2) model uncertainty, and 
(3) scenario uncertainty (e.g., Hawkins and Sutton 
2009). 

Internal variability uncertainty: As evident from the 
name, this is due to the internal variability or 
natural fluctuations of the climate system that 
arise in the absence of any radiative forcing on the 
earth system. 

Model uncertainty: This is also known as a 
response uncertainty. Each model has its own 
representation of the processes in the climate 
system. As such, different models respond 
differently to the same forcing and hence produce 
somewhat different climate change projections at 
global and regional levels. 

Scenario uncertainty: This is the difference in 
response of a given model that can arise due to 
differences in the external forcing, e.g., 
greenhouse gas emissions under different 
pathways, leading to different responses and 
hence different climate change projections. 

Dynamical downscaling uncertainty: In the case of 
regional climate change projections via dynamical 
downscaling an additional uncertainty factor 
arises that is associated with the different 
downscalers (regional climate models) used for 
downscaling. For example, for a given CMIP6 

GCM and for a given scenario, 2 different regional 
climate models used for dynamical downscaling 
will produce somewhat different regional climate 
change projections. This is called the dynamical 
downscaling uncertainty. 

The relative importance of each of the uncertainty 
factors changes with the time and space scale of 
interest. Hawkins and Sutton (2009) compared the 
roles of internal variability uncertainty, model 
uncertainty, and scenario uncertainty. Their work 
indicates that for time horizons of many decades 
or longer, the dominant sources of uncertainty at 
regional or larger spatial scales are model 
uncertainty and scenario uncertainty. However, 
for time horizons of a decade or two, the dominant 
sources of uncertainty on regional scales are 
model uncertainty and internal variability. In 
general, the importance of internal variability 
increases at smaller spatial scales and shorter 
time scales. 

In Figure 11.2 we have shown the total variance 
and fractional variance of near-surface air 
temperature (tas) from CMIP6 GCMs over the V3 
8 km domain, split into 3 sources of uncertainty, 
i.e., internal variability, model uncertainty, and 
scenario uncertainty, following the methodology of 
Hawkins and Sutton 2009. It can be seen from the 
left panel that the internal variability remains 
almost constant in time, the model uncertainty 
shows a steady increase in time but at a slow rate, 
whereas the scenario uncertainty non-linearly 
increases with time. 

 

 
Figure 11.2: Total and fractional variance of surface air temperature over the V3 8 km domain using CMIP6 GCMs data. 

 

From the right panel, as expected from the 
findings of Hawkins and Sutton (2009), on 

timescales of 1-2 decades the dominant sources 
of uncertainty are internal variability and model 
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uncertainty, whereas on longer timescales 
(beyond 2 decades) scenario uncertainty is the 
dominant mode of uncertainty.   
 

11.3 Methods to constrain uncertainties 

While there are uncertainties in climate changes 
projections, there are methods to reduce the 
range of uncertainty by applying constraints. For 
example, one of the methods that was used to 
constrain the climate change projections in IPCC 
AR6 was the use of emulators. As highlighted in 
Chapter 4 (Section 4.2.1), many CMIP6 models 
exhibit an equilibrium climate sensitivity (ECS) of 
5°C or higher (Zelinka et al., 2020), much higher 
than the upper value of the CMIP5 range of 4.5°C. 
Sherwood et al. (2020) constrained the likely and 
very likely ranges of ECS in CMIP6 models to 
2.5°C - 4.0°C and 2.0°C - 5.0°C, respectively. 
Hence, the IPCC adopted the approach of 
employing an emulator for constraining 
temperature and all parameters scaling with 
temperature, based on the analysis of Sherwood 
et al. (2020). 

There have been studies that have used other 
methods to constrain the uncertainty in climate 
change projections. For example, Tokarska et al. 
(2020) used past warming trends to constrain 
future warming in CMIP6 models. They reported 
that projected future warming is correlated with 
the simulated warming trend during recent 
decades across CMIP5 and CMIP6 models, and 
hence can be used to constrain future warming 
based on consistency with the observed warming. 

Emergent constraint (Hall et al., 2019), defined as 
a statistical relationship, across a model 
ensemble, between a measurable aspect of the 
present-day climate (the predictor) and an aspect 
of future projected climate change (the 
predictand) is another method which is promising 
and being widely researched and used to 
constrain future climate change projections. 

Another alternative method to constrain climate 
change projections is the storyline approach 
discussed in Shepherd et al. (2018). This method, 
although inherently subjective, provides a 
powerful way of interpreting climate change 
projections based on storylines, and either 
accepting or discarding the projected changes 
based on the confidence in the associated 
projected storyline.  

 

11.4 Uncertainty in V3 

The 4 types of uncertainty discussed above are 
also present in the V3 climate change projections 
presented in this report, which we explore further 
in this subsection.  

Scenario uncertainty 

The role of scenario uncertainty is shown in Figure 
11.3. It shows the range (across the 3 SSPs) of 
changes in precipitation (%) and changes in 
temperature (°C) for each of the 2 km simulations 
over Singapore for mid- and end-century. We see 
from the figure that, in general, the scenario 
uncertainty increases in time from mid-century to 
end-century, as expected. However, the actual 
magnitude of scenario uncertainty is model-
dependent. This is because the scenario 
uncertainty is governed by the response of a given 
model to different forcings, and since the 
differences in responses to different forcings is 
dependent on the model the scenario uncertainty 
is also dependent on the model. For example, in 
one of the models the scenario uncertainty in 
precipitation change is as high as 25% during the 
end-century, and similarly the scenario 
uncertainty in temperature projections for one of 
the models during the end-century is as high as 
3.5°C. 

 



2 

 

 
Figure 11.3: Projected range of precipitation change (%; left panel) and temperature change (oC; right panel) across SSP 
scenarios during mid-century (2040-2059) and end-century (2080-2099) for the five 2 km downscaled simulations over 
Singapore. Each dot represents the difference between the minimum and maximum values (across the 3 SSPs) for the individual 
models. 

 

 

Model uncertainty 

The next source of uncertainty we look at is the 
model uncertainty. Figure 11.4 shows the future 
range of precipitation change and temperature 

change across models during mid-century (2040-
2059) and end-century (2080-2099) under the 3 
SSPs for the five 2 km downscaled simulations 
over Singapore. 

 

 
Figure 11.4: Projected range of precipitation change (%; left panel) and temperature change (oC; right panel) across models 
during mid-century (2040-2059) and end-century (2080-2099) under the 3 SSPs for the five 2 km downscaled simulations over 
Singapore. Each dot represents the difference between the minimum and maximum values (across the 5 models) for the 
individual SSPs. 
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We see from the figure that, in general, the model 
uncertainty increases with time and is higher in the 
end-century as compared to the mid-century. We 
also find that the model uncertainty is highest for 
the SSP5-8.5 scenario. For example, the model 
uncertainty in projected precipitation change over 
Singapore could be as high as 30% under SSP5-
8.5 during the end-century, and that for projected 
temperature change could be as high as 2.2°C 
under SSP5-8.5 during the end-century. 

Dynamical downscaling uncertainty 

Next, we turn to the dynamical downscaling 
uncertainty. Another dynamical downscaling 
model, the Weather and Research Forecasting 
(WRF) model, was used to perform a parallel 
version of a subset of the simulation conducted 
with SINGV-RCM, making use of two global 
models (EC-Earth3 and MPI-ESM1-2-HR) and 
three time periods (historical, SSP2-4.5, and 
SSP5-8.5).  

 

 
Figure 11.5: Comparison of projected change in mean near-surface air temperature over Singapore in the SSP2-4.5 (orange) 
and SSP5-8.5 (deep red) scenarios using SINGV-RCM and WRF downscaled from EC-Earth3 and MPI-ESM1-2-HR for mid and 
end century at 8km resolution.  

 

Figure 11.5 shows the projected percentage 
change of near-surface air temperature over 
Singapore in the SSP2-4.5 (orange) and SSP5-
8.5 (deep red) scenarios using SINGV-RCM and 
WRF downscaled from EC-Earth3 and MPI-
ESM1-2-HR for mid and end century at 8 km 
resolution. Across the scenarios and time periods, 
near-surface air temperature downscaled from 
WRF are generally warmer, with differences within 
~2°C. Note that the uncertainty is a nonlinear 

combination of both the parent GCM and 
downscaler; for example, relative to SINGV-RCM, 
WRF amplifies the warming in Dec-Jan at the end-
of the century for EC-Earth3 much more than it 
does for MPI-ESM1-2-HR. The spread also 
increases in SSP5-8.5 as compared to SSP2-4.5, 
and in many cases in the end-century as 
compared to the mid-century. The results increase 
our confidence in the projection of warming over 
Singapore in the future under the SSP scenarios. 
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Figure 11.6 shows the projected percentage 
change of precipitation over Singapore in the 
SSP2-4.5 (orange) and SSP5-8.5 (deep red) 
scenarios using SINGV-RCM and WRF 
downscaled from EC-Earth3 and MPI-ESM1-2-
HR for mid and end century at 8 km resolution. 
Even when downscaled with forcings from the 
same GCM, RCMs can predict different signs of 
change (e.g., downscaling of EC-Earth3 over 
annual timescales in the end of the century, 
shown by the crosses versus circles). The 
percentage change can be larger for Feb-Mar, 
which is a climatologically dry month. Similarly, 
using two different GCM forcings on the same 
downscaler can give projections of opposing signs 

(e.g., downscaling using WRF over annual 
timescales for SSP5-8.5, as seen by the cross and 
diamonds). It is not obvious whether the spread in 
RCM or spread in GCM contributes more to the 
overall uncertainty. For example, in the end-
century in Feb-Mar under SSP5-8.5, the 
uncertainty from considering the additional 
regional model WRF (circle and cross) is smaller 
than that of considering an additional GCM (circle 
and square), but the opposite is true for its mid-
century counterpart.  Considering the analysis of 
Figure 11.5 and Figure 11.6 reveals that we have 
a high certainty in future warming over Singapore 
as compared to changes in rainfall.  

 
 

 
Figure 11.6: Comparison of projected percentage change of precipitation over Singapore in the SSP2-4.5 (orange) and SSP5-
8.5 (deep red) scenarios using SINGV-RCM and WRF downscaled from EC-Earth3 and MPI-ESM1-2-HR for mid and end 
century at 8km resolution.  

 

Internal variability uncertainty 

As explained in Section 11.2, internal variability is 
inherent within the climate system. As such, in 
addition to being present in GCMs, this variability 
is present within all the downscaling results and 

observed trends shown in this report. By 
presenting climatological averages over twenty 
years, we aim to reduce the impact on variability 
in assessing the potential of changes in the middle 
or end of the century. Nevertheless, decadal 
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variability from the models could still influence the 
results. The role of such variability becomes 
particularly important over small spatial scales, 
such as local changes over Singapore (Chapter 
10). 

 

11.5 Summary 

Future climate projection for Singapore is 
challenging. In particular, Singapore is located in 
between two much larger areas where increases 
in rainfall are projected on one side and decreases 
on the other for most of the seasons. This is 
related to the complex and seasonally-varying 
regional climate drivers in the SEA region, and 
surely makes projections of rainfall change 
particularly challenging for Singapore, especially 
given its small size.  

The contents of this chapter aim to provide 
guidance to the users of the bias-adjusted 
projections over Singapore (Chapter 10) about the 
reliability and robustness of the projections, given 
the uncertainties inherent in climate projections.  

Our analysis shows that the scenario uncertainty 
increases in time from mid-century to end-century, 
while also being model-dependent. For example, 
in one of the models the scenario uncertainty in 
precipitation change is as high as 25% during the 
end-century, and similarly the scenario 

uncertainty in temperature projections for one of 
the models during the end-century is as high as 
3.5°C. 

Model uncertainty also increases with time and is 
larger in the end-century as compared to the mid-
century. Model uncertainty is also largest for the 
SSP5-8.5 scenario. For example, the model 
uncertainty under SSP5-8.5 during the end-
century can be as high as 30% for projected 
precipitation change and 2.2°C for projected 
temperature change.  

Dynamical downscaling uncertainty can affect the 
change in sign of precipitation change for 
individual models, and lead to temperature 
changes within ~2°C. 

Given the presence of the sources of uncertainty 
described in Section 11.2, we are more confident 
in the projections that remain qualitatively similar 
despite the time period/scenario/model used in 
the analysis. We are also more confident in 
changes that are consistent with the changes in 
the regional and global climate system, especially 
if they are supported by theoretical understanding. 

For the purpose of using the model results, the 
mean or median of the multi-model ensemble 
could be used to provide an indication of the 
change. However, for robust decision making, it 
may be useful to consider the full multi-model 
range of the variables of interest.  
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Summary 
 
This chapter discusses observed and projected 
mean sea-level rise around Singapore and the 
wider Southeast Asian region. Various physical 
mechanisms and processes driving past and 
future mean sea-level rise around Singapore are 
discussed here. Our findings specifically highlight 
vertical land movement (VLM) as an important 
driving process of relative sea-level rise in many 
parts of Southeast Asia.  

We found that the rate of observed and future 
mean sea-level rise around Singapore is 
comparable to the global-mean rate. Past sea-
level change in Singapore is shown at ten tide-
gauge locations whilst future sea-level change in 
Singapore is shown at six of these ten tide-gauge 
locations.  

Relative mean sea level has been rising at a rate 
of 3.6 mm/yr off Singapore (average rate across 
four tide-gauges with rate varies between 3.27 - 
3.77 mm/yr) for the 1993 - 2021 period, and is 
projected to continue rising at different rates 
depending on the future emission pathways. We 
show that the relative mean sea level is likely to 
reach up to 0.74 m under the low emissions 
scenario (SSP1-2.6) and up to 1.24 m under the 
high emissions scenario (SSP5-8.5) by 2100 
(relative to 1995-2014) at a particular location in 
the southern coast of Singapore (Sultan Shoal). 
Projected relative sea-level rise at this location 
could likely increase to 1.15 m (SSP1-2.6) and 
2.12 m (SSP5-8.5) by 2150.  

We show that the contemporary mass 
redistribution (CMR) between the oceans and the 
land, which refers to freshwater from ice sheets, 
glaciers and other terrestrial water storages, is the 
main driver of observed sea-level rise around 
Singapore during the 1993 - 2021 period (70% of 
the total rise). On the other hand, manometric sea-
level, or in other words the ocean internal mass 
distribution, drives a large part of the 
sterodynamic sea-level rise (~23% of the total 
rise) in Singapore with a very weak contribution 
from steric sea-level rise. Our findings indicate 
that nearly 90% of the observed sea-level rise off 
Singapore is “mass-driven” and highlights the 
importance of having a bottom pressure recorder 
in the shelf region of Singapore to assist future 

studies of mean sea-level changes around 
Singapore.  

We present the contribution from six driving 
components to mean sea-level change in 
Singapore by 2100 and 2150 under the low and 
high emission scenarios: Antarctic and Greenland 
ice sheets, glaciers, land water storage, ocean 
sterodynamics. Our projections show that mass 
changes in the Antarctic ice sheet are projected to 
likely contribute the most significantly to the 
projected sea-level rise in Singapore (Sultan 
Shoal) by 2100 and 2150 regardless of emission 
scenarios.   

Low confidence sea-level projections for 
Singapore and the global mean up to 2300 are 
also presented in this chapter. These projections 
follow single paths of low-likelihood high-impact 
scenarios consistent with unstable ice sheet 
feedback processes such as marine ice cliff 
instability (MICI) and marine ice shelf instability 
(MISI). Despite their low confidence, these 
projections offer a more comprehensive view of 
potential future climate scenarios, providing 
essential information for stakeholder planning. It 
is, however, important to use these projections 
cautiously, with awareness of their inherent 
uncertainties. 

This chapter centers on mean sea level in 
Singapore and the surrounding region, excluding 
an analysis of extreme sea level. Coastal water 
level fluctuations are also contributed from tides, 
storm surges, and waves. For robust mitigation 
and adaptation and planning in response to sea-
level rise, an understanding of extreme sea levels 
is as vital as comprehending mean sea-level 
change. The mean sea-level change projections 
outlined in this chapter hence provide a foundation 
for future studies on extreme sea levels, aiding in 
comprehensive coastal sea-level change studies. 

The availability of coastal observational systems 
and data is very sparse in many parts of the 
Southeast Asian region, including Singapore. 
Sustaining the existing observing networks (e.g. 
tide gauges) and initiating coordinated ocean 
observational programmes (e.g., coastal 
hydrographic measurements) is fundamental in 
addressing sea-level rise in the Southeast Asian 
seas. The complexity of understanding the drivers 
behind mean sea-level rise also calls for 
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developing modeling frameworks for the 
Southeast Asian region encompassing high-
resolution regional and coastal hydrodynamic 

models. This will aid sea-level-rise-induced 
coastal impact assessments (e.g., inundation, 
erosion and land/infrastructure loss).

 

 

 

 

12.1 Introduction 
 
Global mean sea-level rise is one of the most 
significant consequences of climate change, with 
the potential to impact coastal communities 
worldwide. Over the past century, global-mean 
sea level rose by an average rate of 1.8 mm per 
year, and this rate is expected to increase in the 
coming decades due to increased mass loss of ice 
sheets and glaciers and the thermal expansion of 
ocean waters (Fox-Kemper et al. 2021). Countries 
in southeast Asia are particularly vulnerable to 
sea-level rise due to the large population living in 
low-lying coastal areas (Nicholls and Cazenave, 
2010; Nicholls et al. 2021; Asian Development 
Bank, 2018) and making robust estimates of sea-
level rise and its coastal impacts is challenging for 
this region mainly due to sparse observational 
data and complex oceanographic and climatic 
features of the region as illustrated in Figure 12.1. 
Situated at the southern tip of the Malay 
Peninsula, Singapore is particularly at risk from 
sea-level rise impacts such as inundation, erosion 
and coastal flooding (Ministry of Sustainability and 
the Environment, 2021; Figure 12.2). The coastal 
sea-level rise and associated impacts indeed 

pose significant challenges to Singapore's public 
safety, infrastructure, and economy (National 
Climate Change Secretariat, 2018).  
 
Singapore Prime Minister Lee Hsien Loong, in his 
National Day Rally speech in 2019, emphasised 
the importance of addressing sea-level rise 
around Singapore, highlighting the government's 
commitment to tackling this critical issue over the 
coming years (Prime Minister’s Office Singapore, 
2019). To address the challenges posed by sea-
level rise, the Singapore government has 
implemented various measures that collectively 
enhance state resilience to climate change. For 
example, the Coastal and Flood Protection Fund 
was established in 2018 as part of the Climate 
Action Plan, with an initial budget of SGD 5 billion 
to support coastal adaptation measures (National 
Climate Change Secretariat, 2018). Additionally, 
to enhance research in understanding sea-level 
rise and its impacts around Southeast Asia, which 
includes seas around Singapore, the National Sea 
Level Programme (NSLP) was launched by the 
Singapore government in 2019 with an initial 
budget of SGD 10 million (Ministry of 
Sustainability and the Environment, 2020). 
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Figure 12.1: Land surface elevation and sea-floor depth relative to mean sea level of the Southeast Asian region. Major seas, 
shelves, and straits are shown and the geographic location of Singapore is marked by a rectangle. Units are 102 m, e.g., 0.1 = 
10 m above sea level. Data source: General Bathymetric Chart of the Oceans (GEBCO_2022 Grid).    

 

Changes in coastal water level can occur either 
through changes in regional relative mean sea-
level or by means of changes caused by tides and 
extreme weather processes (waves, storm 
surges) or some combination of both.  

Singapore’s Second National Climate Change 
Study - by evaluating both time-mean sea level 
and sea-level extremes using different physical 
models - indicated that the projected coastal water 
levels around Singapore by the end of this century 
are predominantly driven by mean sea-level rise 
and changes in extreme sea levels are not so 
significant.  

Hence, in this report, we focus mainly on how and 
why relative mean sea level rose around 
Singapore and the wider southeast Asian region 

over the historical period (Sections 12.3 and 12.4) 
and provide robust estimates of projected mean 
sea levels around Singapore for this century for 
different emission scenarios, using IPCC sea-
level projection methodology. 

In the following sections, we provide a general 
description for main drivers of coastal sea level 
following the historical sea-level change for 
Southeast Asia and Singapore using 
observational data, and subsequently discuss 
future sea-level change for these regions based 
on the Intergovernmental Panel on Climate 
Change (IPCC) Sixth Assessment Report of 
Working Group I (AR6). 
        

  



2 

 

 

Figure 12.2: Map of elevation of Singapore (provided by Singapore Land Authority). Units are meters relative to mean sea level.
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12.2 Drivers of sea-level change 
 
Sea level varies over a wide range of spatial (from 
a point to global scale) and time (from seconds to 
millennia) scales. Sea level is an integrative ocean 
variable, meaning it integrates changes over the 
entire ocean depth and also reflects changes in 
other components of the climate system such as 
land, atmosphere and cryosphere. Therefore, sea 
level seldom settles down to a steady state (a 
condition in which no sea-level change occurs 
over time), but it constantly changes under the 
influence of several geophysical processes as 
shown in Figure 12.3.  

Mean sea level at a given location is usually 
defined as the average of sea surface height over 
a certain period. It is the annual average water 
level at the coast upon which shorter-term 
variations from tides, surges and waves are 
superimposed. The averaging period could vary 
and hence, it is crucial to note that the rate of MSL 
could differ significantly if not compared over 
identical periods of time.  

For a given location, subtracting the mean sea 
level from the original sea-level measurements 
would yield sea-level anomalies, which represent 

deviations of sea surface from a mean level due 
to several processes operating at different spatial 
and time scales, as illustrated in Figure 12.3. 

Sea level can be measured with respect to a 
reference level, or also known as the datum, 
which is either fixed to the land (e.g., tide-gauge 
sea-level measurements) or based on Earth’s 
center (e.g. satellite observations). Tide-gauge 
measured sea-level changes are hence affected 
by (or include information of) local vertical land 
movement (VLM) at the tide-gauge location, and 
hence called relative sea-level (RSL) changes.  

Global-mean sea level1 (GMSL) is the area-
weighted average of sea surface height over the 
global oceans. Consequently, temporal changes 
in GMSL indicate a net change in the global ocean 
volume caused by ocean thermal expansion 
and/or exchange of water between other 
components of the Earth (e.g., mass balance 
changes in ice sheets, glaciers and terrestrial 
water storages). GMSL change due to the net 
mass change of the ocean is known as global-
mean barystatic sea-level change, and that is 
caused by a net change in the global ocean heat 
content is called global-mean thermosteric sea-
level change (Gregory et al., 2019).  
 

 

 
1 Mean sea level averaged over the global oceans. Refer to 

the Glossary for a complete list of sea level terminology 
definitions. 
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Figure 12.3: Schematic of different geophysical processes contributing to global, regional and local sea-level change. Note, the 

color-coding reflects the spatial scales on which the different processes operate, as per the column titles and that these are 

treated additively as we progress to smaller scales (left-to-right). 

 

Regional and local sea-level changes can deviate 
from the global mean due to a number of 
processes (e.g. ocean circulation and tides) as 
summarised in Figure 12.3. By definition, these 
regional processes do not contribute to GMSL 
change since averaging their contributions over 
the entire ocean surface results in zero net 
change. The key processes that induce regional 
sea-level changes are ocean circulation (dynamic 
sea-level change) and the regional sea-level 
variations associated with freshwater exchange 
between the oceans and the land.  
 
In the following sections, we focus on the drivers 
of mean sea level that occur on different temporal 
and spatial scales with a few contextual remarks 
for the sea-level changes around Singapore. We 

separate and discuss the drivers contributing to 
global, regional and local mean sea level.  
 

12.2.1 Global drivers 
 
GMSL rise is one of the major consequences of 
anthropogenic global warming. The earth system 
gained substantial energy during the last fifty from 
increased greenhouse gas emissions and 
associated positive radiative forcing. This surplus 
energy is closely linked to GMSL rise through the 
global ocean thermal expansion (Fox-Kemper et 
al., 2021). For instance, the GMSL rise (1.2 – 
1.5 mm/yr ; Figure 12.4a) in the 20th century (e.g. 
Hay et al., 2015; Frederikse et al., 2020) is linked 
to the fact that nearly 90% of the excessive 
radiative heating of the climate system, due to 
greenhouse gas emission, has been stored in the 
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oceans (e.g. von Schuckmann et al., 2016, 2023; 
Church et al., 2013; Zanna et al., 2019; 
Meyssignac et al., 2019).   
 
Global-mean thermosteric sea-level (GMTSL) rise 
accounts for nearly 90% of the observed energy 
increase since 1971 with much smaller amounts 
going into melting of ice (3%) and heating of the 
land (5%) and atmosphere (1%). Notably, majority 
of the ocean warming (~ 60%) is confined in the 
upper 700 meters of the oceans, causing about 4 
- 5 cm of GMSL rise since 1971 and such rapid 
warming of the ocean (thermosteric sea-level rise) 
is shown to be indeed unprecedented over the last 
two thousand years (Fox-Kemper et al., 2021; 
Nidheesh et al., 2022). Nevertheless, it is 
important to note that the thermosteric sea-level 
rise is not spatially uniform across the oceans and 
in fact the thermal expansion is almost negligible 
over the shallow shelf regions like Singapore, 
leading to additional oceanic processes balancing 
the spatial variations as discussed in Section 12.3.    
 
The remaining heat due to global warming 
(~10%), although small compared to what is being 
stored in the oceans, is in fact more efficient in 
changing the GMSL via changing the mass 
balance of land-based ice (i.e., polar ice sheets 
and glaciers) and the global hydrological cycle 
(Forster et al. 2021; WCRP Global sea Level 
Budget Group, 2018; von Schuckmann et al. 

2020; Fox-Kemper et al. 2021). For instance, 
Figure 12.4a clearly shows that the GMSL change 
due to the redistribution of mass between the 
oceans and land is nearly twice the GMTSL 
change over the entire twentieth century, and the 
rates of global-mean barystatic and thermosteric 
sea-level rise are almost equal in magnitude 
during 1971 - 2018 (Fox-Kemper et al., 2021). 
More specifically, the GMSL rise over 1971 - 2018 
(7.3 - 14.6 cm with a central estimate of 10.96 cm) 
can be closed with largest contribution comes 
from ocean thermal expansion (3.4 - 6.1 cm with 
a central estimate of 4.75 cm) and remaining 
contributions from glaciers (2.1 cm [1 - 3.2 cm]), 
Greenland ice sheet (1.2 cm [0.8 - 1.6 cm]), 
Antarctic ice sheet (0.67 cm [-0.4 - 1.7 cm]) and 
terrestrial water storage (0.73 cm [-0.2 - 1.7 cm]).  
 
Additionally, a number of recent studies (e.g. 
Nerem et al., 2018; Dangendorf et al., 2019) 
pointed out that there is an apparent acceleration 
in the rate of GMSL rise, as evident in the higher 
rate of satellite-measured GMSL rise (~ 3.4 mm/yr 
since 1993), possibly related to accelerating levels 
of anthropogenic forcings in the climate system. 
Satellite-based observations and other in-situ 
measurements also suggest that mass loss from 
glaciers and the polar ice sheets has increased 
over recent decades, and can potentially become 
large sources of sea-level change in the current 
century (Fox-Kemper et al., 2021).      

 

 
Figure 12.4: (a) Estimates of twentieth-century global-mean sea-level (GMSL) rise from different sources: Commonwealth 
Scientific and Industrial Research Organization (CSIRO; Ref. 1), Hay et al. 2015 (Ref. 2) and Frederikse et al. 2020 (Ref. 3). 
The two major components - thermosteric and barystatic contributions - of the GMSL are also shown from Frederikse et al. 
(2020). GMSL curve from satellite altimetry is also shown. (b) Spatial map of mean sea-level rise trend for the period 1993 - 
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2021 estimated from satellite altimetry. The southeast Asian region is highlighted by a rectangle [Note that satellite-observed 
sea-level rise does not include the effects of vertical land motion].  

 

12.2.2 Regional drivers 
 
Sea-level rise is not spatially uniform (Figure 
12.4b). For instance, the rate of satellite-observed 
sea-level rise in the far western Pacific (about 5-6 
mm yr−1 is clearly larger than the GMSL rate over 
the same period. Mean sea-level rise is generally 
higher (lower) than the global-mean in the 
Southern Ocean mid-latitudes (eastern tropical 
Pacific), as seen in Figure 12.4b. This spatially 
non-uniform sea-level rise, or also known as 
dynamic sea-level change, is primarily caused by 
ocean circulation, which redistributes water mass 
and heat within the ocean basins under the 
influence of winds and density differences.  

For example, strengthened trade winds in the 
Pacific during the falling phase of Interdecadal 
Pacific Oscillation (IPO) since 1990s have 
resulted in increased ocean heat uptake by the 
equatorial Pacific and warm water accumulation in 
the west (e.g. England et al. 2014), causing a 
higher (lower) rate of mean sea-level rise in the 
western (eastern) tropical Pacific as seen in 
Figure 12.4b. Regional sea-level changes are 
often driven by surface winds and spatially varying 
atmospheric heat and freshwater fluxes, often 
associated with regional climate modes. For 
instance, the sea-level changes in the Atlantic 
ocean is primarily driven by wind and heat flux 
variations associated with the North Atlantic 
Oscillation (NAO) and changes in ocean heat 
transport associated with the Atlantic Meridional 
Overturning Circulation (AMOC; Oppenheimer et 
al. 2019). Similarly, the high rates of sea-level rise 
in the north Indian Ocean during the second half 

of the 20th century was linked to the weakening of 
Indian Monsoon circulation (Swapna et al. 2017).  

Such natural variability in the climate system is 
very efficient in channelising non-uniform 
distribution of heat, salt and water masses within 
the ocean and to lead non-uniform sea-level 
changes at different oceanic regions. Ocean 
general circulation models are widely used to 
understand this ‘circulation-induced’ sea-level 
variations, known as ‘dynamic’ sea-level changes 
(Gregory et al. 2019). The global-mean density of 
the ocean can vary in time and contributes to 
regional as well as global-mean sea-level 
changes. The regional sea-level change due to 
the combined effects of dynamic sea-level change 
and global-mean thermosteric sea-level change is 
called ‘sterodynamic’ sea-level changes (Gregory 
et al. 2019).  

Understanding the natural climate variability and 
ocean circulation is a key aspect in the 
understanding of climate-change-induced 
regional sea-level rise. For instance, several 
studies have examined the sea-level rise in the 
tropical Pacific and showed that accounting for 
natural climate variability (i.e., ENSO and/or IPO) 
could substantially modify the observed sea-level 
rise pattern. This is useful in detecting the trends 
originating from anthropogenic warming (e.g. 
Royston et al. 2018). Sea-level rise in the 
Southeast Asian seas could also be influenced by 
low-frequency natural climate variability rooted in 
both Indian and Pacific oceans. Understanding 
what drives regional variability in sea level is also 
key for deriving robust sea-level projections.     
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Figure 12.5: Relative sea-level rise in the southeast Asian region due to GIA (a) and GRD (b) effects. The rate of GIA-induced 
sea-level change is taken from the ICE-6G_C (VM5a) model (Peltier et al. 2015). The GRD fingerprint (b) represents the relative 
sea-level rise caused by mass redistribution between the oceans and ice sheets (Antarctic and Greenland), mountain glaciers 
and terrestrial water storages for the period 1900 - 2018, as described in Frederikse et al. (2020).     

 

Sea-level change in response to land-ice melting 
and changes in land water storage is also not 
uniform across the oceans. The associated 
changes in Earth’s gravity, rotation and crustal 
deformations impose characteristic patterns of 
regional sea-level change (Farrel and Clarke, 
1976), collectively referred to as GRD fingerprints. 
GRD effects on sea level can be due to past 
changes (e.g. changes occur over glacial cycles) 
in land-ice storage, which is known as glacial 
isostatic adjustment or GIA. GRD effect could also 
be due to ongoing changes in the land-ice or land 
water storages, which is termed contemporary 
GRD effects. Observed RSL rise is affected by 
both GIA and GRD effects. For example, on 
average, the ocean basins are slightly subsiding 
(uplifting) due to the loading (unloading) of sea 
water since the Last Glacial Maximum that 
occurred about 20,000 years ago. On the other 
hand, mass loss from the Greenland ice sheet 
over the last few decades has caused a sea-level 
fall around Greenland by a few centimeters as a 
response to changes in the local gravitational field 
(e.g. Coulson et al. 2022) while sea level rose over 
most of the tropical oceans in response to that 
melting.  

While the GRD sea-level fingerprints impose large 
spatial gradients in RSL near glaciated regions 
(e.g. the northeast US coasts or Greenland ice 
sheet), those effects are relatively small in the 
tropics (Wang et al. 2021). For example, Figure 
12.5 illustrates the current rate of RSL rise due to 

GIA (Figure 12.5a) and GRD (Figure 12.5b) from 
Peltier et al. (2015; GIA rate) and Frederikse et al. 
(2020; GRD), respectively in the Southeast Asian 
region. The GIA-induced sea-level rise represents 
the sea-level response to deglaciation history over 
the last 25,000 years from an updated GIA model 
(ICE-6G_C (VM5a); Argus et al. 2014). Figure 
12.5a suggests that RSL falls with rates ranging 
from -0.1 to -0.4 mm/yr at many of the coastal 
locations in the Southeast Asia due to GIA, 
including Singapore (Table 12.5 for GIA-induced 
RSL change at tide-gauge stations around 
Singapore).  

Figure 12.5b indicates the RSL change due to the 
net mass balance changes in the ice sheets, 
glaciers and land water storage for the period 
1900 - 2018 (Frederikse et al., 2020). The GRD-
induced sea-level rise is mostly uniform around 
Singapore and the wider south China sea region 
(~1 mm/yr) for the 1900 - 2018 period (Figure 
12.5b).  
 

12.2.3 Local drivers 
 
In addition to the factors discussed in the previous 
sections, sea-level rise at the coasts is further 
affected by various physical processes such as 
tides, storm surges and waves, changes in coastal 
morphology, and VLM. VLM is one of the most 
important yet often understudied issues in the 
detection of RSL rise at many coastal regions. As 
we will see in Section 12.3, many of the coastal 
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locations in the Southeast Asian region indeed 
experience significant local VLM that exacerbates 
the climate-change-driven sea-level rise.  

For instance, Indonesia’s capital city Jakarta, is 
subsiding at an alarming rate of a few centimeters 
per year (e.g., Bott et al. 2021), and the country is 
moving its capital to mitigate the associated risks. 
The Solomon Islands, a low-lying island nation in 
the western tropical Pacific, has lost at least five 
of its reef islands to the rising seas and intense 

wave action, and many of the small islands in the 
archipelago await a similar fate (Albert et al. 
2016).  

Factors such as tectonic activities and 
anthropogenic subsidence potentially cause 
significant RSL changes in the Southeast Asian 
seas. Monitoring and understanding those factors 
are critical to understanding RSL rise in the 
region. 

 

 

Figure 12.6: An illustration for California for 1 m of sea level rise of the significant water level components that comprise total 
water levels on a beach during a storm resulting in potential flooding. The range of values are based on observations and 
modeling conducted for California as described in Barnard et al. (2019). (H = wave height, Hbr = breaking wave height). The total 
water level at the coast is a combined effect of regional sea-level rise and other coastal phenomena (e.g. tides, storm surges, 
seasonal effects and waves). Adapted from Barnard et al. 2019). 

 

At the coasts, tides, storm surges and waves 
constitute the major processes, coupled with 
mean sea-level change, that contribute to 
significant water level oscillations at the coasts 
(Figure 12.6). Consequentially, this results in 
extreme sea level change. 

Tides around Singapore are typically mixed 
diurnal and semidiurnal with a range around 2 – 3 
m. Cyclonic storm activities around Singapore are 
weak due to its proximity to the equator. However, 
sea-level seasonal variations associated with 
monsoons are substantial (~ 20 cm amplitude; 
see appendix A1). The monsoon-driven wind-
setup drives high (low) sea levels during the 
northeast (southwest) monsoon and the extreme 
sea-level anomalies around Singapore indeed 
tend to occur during the northeast monsoon 
(Tkalich et al. 2009).  A key finding of Singapore's 

Second National Climate Change study was 
indeed that the projected changes in surges or 
waves are dominated by projected mean sea-level 
rise. Cannaby et al. (2016) pointed that the 
highest recorded surge level in the Singapore 
Strait (~ 84 cm) lies between the central and upper 
estimates of mean sea-level rise by 2100, 
highlighting the role of mean sea-level rise in 
driving the extreme water levels at the coasts and 
the vulnerability of the region.  

For the southeast Asian region, the lack of long-
term, spatially dense ocean and coastal 
observations is one of the main challenges in 
improving understanding of sea-level rise. Ideally, 
each tide-gauge installation should include a 
complementary Global Navigation Satellite 
System (GNSS) receiver to directly monitor VLM. 
Spatial monitoring of VLM with InSAR (Synthetic 
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Aperture Radar interferometry) techniques 
provides another means of estimating the VLM for 
coastal regions (e.g. Catalao et al. 2020, Tay et 
al., 2022). Temperature, salinity and current 
measurements are also fundamental in 
understanding coastal ocean dynamics and sea-
level changes. By analysing observed and model-
based sea-level data, this report indicates that the 
sea-level rise around Singapore is essentially 
“mass-driven” (Section 12.3). The deployment of 
a bottom pressure recorder in the shelf region 
around Singapore would significantly help to 
observe and interpret the sea-level changes here. 
However, the availability of such complementary 
observational systems and data is very sparse in 
many parts of the Southeast Asian region, 
including Singapore. Sustaining the existing 
observing networks (e.g. tide gauges, LIDAR) and 
initiating coordinated ocean observational 
programmes would hence be an important step 
forward in addressing sea-level rise in the SEA 
region.  

The complexity of fully comprehending local sea-
level change on varied timescales (Figure 12.3) 
also calls for developing modeling frameworks for 
the Southeast Asian region encompassing high-
resolution regional ocean modeling and coastal 
hydrodynamic models, which are essential tools to 
translate the sea-level rise information into coastal 
impacts (e.g., inundation, erosion and 
land/infrastructure loss).  
 

12.3. Observed sea-level rise in 
Southeast Asia 
 
Tide-gauges have been the key observational 
records of coastal sea-level changes, and a large 
body of literature has discussed the mean sea-
level changes using those records, at both global 
and regional scales (e.g. Peltier and Tushingham, 
1991; Douglas, 2001; Jevrejeva et al. 2008; 
Church and White, 2011; Gregory et al. 2013; Hay 
et al. 2015; Wyrtki, 1987; Mitchum and Wyrtki, 
1988; Unnikrishnan and Shankar, 2007; Feng et 
al. 2004; Woodworth et al. 2019; Nidheesh et al. 
2013; Royston et al. 2022). Tide-gauge measures 
local sea-level changes relative to the land to 
which the gauge is fixed. A number of oceanic and 
land processes can thus affect tide-gauge 
readings as illustrated in Figure 12.3.  

Although tide-gauges possess data over multi-
decadal periods, a natural limitation of tide-
gauges lies in their sparse and uneven 
geographical distribution. Extreme care has been 
given in most literature to minimise the biases 
originating from sparse spatial coverage while 
estimating global and regional sea-level-rise 
trends from those records (e.g. Hay et al. 2015; 
Unnikrishnan and Shankar, 2007). In addition, the 
record length of sea-level data varies across 
gauges. Many of the records across the world 
suffer from substantial data gaps, and this 
includes many coastal regions in Southeast Asia. 
Few studies have attempted to quantify the mean 
sea-level rise in the South China sea and the 
adjacent shallow shelves using tide gauges (e.g. 
Tkalich et al. 2013), although a large body of 
literature has addressed tide-gauge-based sea-
level rise estimates in the western Pacific ocean 
(e.g. Merrifield, 2011; Feng and Meyers, 2004).   

Ideally, the VLM-corrected mean sea-level 
change estimate from tide-gauges is expected to 
closely match the mean sea-level change 
measured by satellite altimetry at the same 
location (Section 12.2). As we will see in the 
following section, synergising the estimates of 
mean sea-level rise from tide-gauges and satellite 
altimetry could provide better insights on local 
mean sea-level change and potentially indicate 
the rates of VLM over their overlapping period. 
Satellite altimetry provides global-scale, gridded 
sea-level measurements and has greatly aided 
the understanding of open ocean variability since 
1993. A few studies in the past have shown that 
employing satellite sea-level data in conjunction 
with tide-gauge records can provide meaningful 
information on regional and coastal sea-level rise 
(e.g. Vinogradov and Ponte, 2011; Unnikrishnan 
et al. 2015; Allison et al. 2022).  
 
In the following section, we describe the observed 
sea-level rise in Southeast Asian seas (SEAS) by 
analysing sea-level data from selected tide-
gauges and satellite altimetry for the 1993 - 2021 
period. 
 

12.3.1 Sea-level rise from satellite altimetry 
and tide gauges 
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Monthly sea-level data from tide-gauge records 
are obtained from the Permanent Service for 
Mean Sea Level (PSMSL) repository (Holgate et 
al., 2013; PSMSL, 2022). All the records used in 
this report are the ‘revised local reference’ records 
to assure that the sea-level heights at all stations 
are referenced to a common datum. More details 
can be seen in the PSMSL website 
(https://psmsl.org). Satellite-measured sea-level 
anomaly (with respect to mean sea-surface height 
for the period 1993 - 2012) data from the 
Copernicus Marine Environment Monitoring 
Service (CMEMS) are another key observational 
data used in this report, which is based on a 
merged product from multiple satellite missions 
(TOPEX/Poseidon, ERS-1/2, Jason-1, Jason-2, 
and Envisat). The monthly-mean sea-level data 
have global coverage and are available at a 
spatial resolution of 0.25° × 0.25°. We analyzed 
the data for the period 1993 - 2021, for this report.  
We considered 12 tide-gauge records in the SEAS 
(Figure 12.7 and Table 12.1), each of them having 

at least 90% of data coverage during the altimetry 
period (1993 - 2021). Note that all the twelve 
gauges, as shown in Figure 12.8, do not extend to 
the entire satellite period, but some of them do not 
have a couple of years of data at the end of the 
period (Malakal [1993 - 2019], Kota Kinabalu 
[1993 - 2019], Zhapo [1993 - 2020], Sultan Shoal 
[1993 - 2020], Tanjung Geylang [1993 - 2019], 
and Ko Taphao Noi [1993 - 2020]). As we focus 
on long-term trends, the sea-level seasonal cycle 
is removed for both tide-gauge and satellite 
monthly data. Hence, all the sea-level data 
analysed in this report, including the reanalysis 
data, are anomalies with respect to 1993 - 2012 
time-mean sea level and seasonal climatology 
estimated over the period of analysis (1993 - 
2021). The sea-level trends are estimated through 
a linear regression of the sea-level data in time, 
and the standard error of the trend is provided as 
a measure of trend uncertainty.  

  

 

Figure 12.7: Observed sea-level trend from satellite altimetry (spatial map) and tide gauge records (circle) for the period 1993 - 
2021. The selected tide gauges are, from east to west: 1.  Pago Bay (Guam); 2. Malakal (Palau); 3. Darwin (Australia); 4. Cebu 
(Philippines); 5. Manila (Philippines); 6. Kota Kinabalu (Malaysia); 7. Zhapo (China); 8. Sultan Shoal (Singapore); 9. Tanjung 
Gelang (Malaysia); 10. Fort Phrachula Chomklao (Thailand); 11. Ko Taphao Noi (Thailand); 12. Home Island (Cocos Islands).  

 

https://psmsl.org/
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Satellite sea-level trend map for the period 1993 - 
2021 shows that mean sea level is rising almost 
everywhere in the Southeast Asian region, with a 
regional-mean rate of ~ 4.4 mm/yr (Figure 12.7). 
The rate of sea-level rise is not the same 
everywhere in the region and exhibits deviations 
from the regional-mean and the global-mean rate 

(~3.4 mm/yr). For instance, the rates are higher in 
the western equatorial Pacific (4 - 6 mm/yr) and 
the eastern Indian Ocean (off the Andaman 
Islands) whereas relatively weak sea-level rise (0 
- 2 mm/yr) is observed in the tropical northwest 
Pacific (Figure 12.7).  

 

 



12 

 

Figure 12.8: Time series of sea-level anomalies from tide gauges (black) and satellite altimetry (blue, averaged over 1 degree 
around each gauge location shown in Figure 12.5). The difference between the tide-gauge and satellite time series is also shown 
(orange). A linear trend based on the least-square method is also plotted as a dashed line over each time series with the same 
color. The trend and corresponding standard error for each tide-gauge is given in Table 12.1.  

 

Note that the rate of mean sea-level rise in the 
South China sea (SCS) and off Singapore is 
close to the global-mean rate. Regional 
deviations in the rate of sea-level change can 
arise through various geophysical processes, 
such as the regional ocean circulation and GRD 
effects (c.f. Figure 12.3). We will come to these 
points in the following sections. 

Rate of sea-level rise across selected tide-gauge 
records in the SEAS (locations of gauges are 
shown in Figure 12.7 with color indicating the 
sea-level trend) also show similar spatial 
variations. Notably, the tide-gauge trends differ 
significantly from satellite-based trend estimates 
(Figures 12.7 & 12.8, Table 12.1) at six locations, 
namely - Darwin (Australia), Cebu (Philippines), 
Manila (Philippines), Fort Phrachula Chomklao 
(Thailand), Ko Taphao Noi (Thailand), and Home 
Island (Cocos Islands). As explained in section 
12.2, the difference in the rates of sea-level rise 
between altimetry and tide gauge at a given 
location provide an indication of the local VLM 
(Woppelmann and Marcos, 2016).  

Table 12.1 also suggests that the Sultan Shoal 
(Singapore) does not have significant local VLM 
compared to other coastal locations in the SEA 
region (also refer to Sections 12.4 and 12.6). As 
detailed in Section 12.6, the GIA-induced VLM in 
Singapore drives a land uplift (RSL fall) which 
may counter any local land subsidence due to 
other factors. Two of the Malaysian gauges 
(Kota Kinabalu and Tanjung Gelang), as shown 
in Figure 12.8, stopped recording sea-level 
change around 2018. This accentuates the 
importance of sustaining tide-gauge for 
monitoring and improved understanding of long-
term sea-level rise at coastal regions. Ideally, 
tide-gauge measurements should be 
supplemented with direct VLM estimates (e.g. 
using GNSS; Martinez-Asensio et al. 2019), 
which are absent at many of these tide gauge 
locations. We call for joint programs to monitor 
the VLM in Singapore and other vulnerable 
locations in the Southeast Asian region toward 
reliable future sea-level projections and coastal 
adaptation procedures.  

 
Table 12.1: Sea-level trend and standard error for the selected tide-gauge records in the SEAS. Satellite sea-level is averaged 
at a 1-degree area surrounding each tide-gauge station and the trend of this satellite time series is also given. The trend 
estimates for the difference time series (i.e. tide-gauge - altimetry) is shown in the last column. Unit is in mm/yr. 

 Tide Gauge Lon (E) Lat (N) Tide gauge Satellite Difference 

1 Pago Bay (Guam) 144.65 13.44 3.20 ± 0.55 3.84 ± 0.52 -0.42 ± 0.10 

2 Malakal (Palau) 134.47 7.33 4.59 ± 0.87 5.35 ± 0.82 -0.63 ± 0.11 

3 Darwin (Australia) 130.85 -12.47 5.26 ± 0.45 2.27 ± 0.45 2.99 ± 0.20 

4 Cebu (Philippines) 123.92 10.3 6.96 ± 0.40 4.18 ± 0.33 2.33 ± 0.30 

5 Manila (Philippines) 120.97 14.58 12.71 ± 0.41 4.92 ± 0.25 7.78 ± 0.30 

6 
Kota Kinabalu 
(Malaysia) 

116.06 5.98 4.28 ± 0.41 4.74 ± 0.28 -0.6 ± 0.14 

7 Zhapo (China) 111.82 21.58 3.23 ± 0.31 3.79 ± 0.23 -0.51 ± 0.16 

8 
Sultan Shoal 
(Singapore) 

103.65 1.23 3.26 ± 0.29 3.34 ± 0.20 -0.01 ± 0.19 
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9 
Tanjung Gelang 
(Malaysia) 

103.43 3.97 4.11 ± 0.21 4.19 ± 0.17 -0.04 ± 0.13 

10 
Fort Phrachula 
Chomklao (Thailand) 

100.58 13.55 7.49 ± 0.33 4.67 ± 0.25 2.8 ± 0.35 

11 
Ko Taphao Noi 
(Thailand) 

98.43 7.83 9.69 ± 0.53 3.89 ± 0.33 5.93 ± 0.35 

12 
Home Island (Cocos 
Islands) 

96.89 -12.12 6.96 ± 0.38 3.66 ± 0.36 3.26 ± 0.09 

12.3.2 Decomposition of observed sea-level 
rise 
 
The sea-level trend from satellite altimetry can be 
decomposed into two main sources. First, the sea-
level trend which is caused by ongoing freshwater 
exchange between the ocean and land (this 
includes ice mass changes in grounded ice sheets 
and glaciers and changes in terrestrial water 
storages). Following Harvey et al. (2021), we call 
this source (component) “contemporary mass 
redistribution” (CMR). Note that, in our definition, 
the CMR sea-level trend includes both global-
mean barystatic sea-level trend and the 

associated regional GRD fingerprints (Gregory et 
al. 2019). Second, the sea-level trend caused by 
ocean sterodynamic changes reflects the sea-
level change caused by ocean circulation and 
seawater density variations (Section 12.2.2). 
Satellite sea level is also affected by GIA, and 
hence, we have corrected the satellite trend for 
GIA by subtracting GIA (GSL) solutions from ICE-
5G (Peltier, 2004; Appendix A2) to focus on the 
remaining two contributions - sterodynamic and 
CMR. We can hence write the GIA-corrected sea-
level rise (SLR) from altimetry as: 
 
SLR (altimeter) = Sterodynamic + CMR + residual     

 

 

Figure 12.9: a) Sterodynamic sea-level rise (which includes the effects of ocean density variations and regional circulation) for 
the period 1993 - 2021. b) Sea-level rise trend estimated from the residual signal (i.e. satellite sea level - minus - sterodynamic 
sea level), considered here as an estimate of sea-level trend caused by contemporary mass redistribution (CMR) between the 
ocean and land (i.e. sea-level rise caused by ice-melting from ice sheets and glaciers, and terrestrial water storage changes).  

 
The ocean sterodynamic sea-level trend is 
estimated from the European Centre for Medium-
Range Weather Forecasts (ECMWF) Ocean 
Reanalysis System 5 (ORAS5; Zuo et al. 2019) 
sea surface height for the satellite period (1993 - 
2021). Since ORAS5 is constrained to satellite 

sea-level trend, we have subtracted the global-
mean sea level (estimated from the ORAS5 sea 
level) from each grid-point and then added back 
the global-mean thermosteric sea level (GMTSL; 
estimated from ORAS5 ocean temperature and 
salinity), to obtain the sterodynamic sea level. The 
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sterodynamic sea-level rise hence represents 
both dynamic sea-level rise (due to changes in 
regional ocean circulation) and the global-mean 
thermosteric sea-level rise. We subtracted the 
sterodynamic sea level from altimeter sea level to 
obtain the “residual signals'', which are 
approximated to be representative of the sea-level 
change due to CMR (assuming the uncertainties 
in the sterodynamic sea level is small as our 
period of analysis is well constrained by 
observational data). This exercise provides us a 
unique way to detect CMR-induced sea-level 
changes in the SEAS without independent 
estimates of the GRD fingerprints.  

The sterodynamic sea-level rise in the SEAS is 
positive and rather uniform (with a regional-mean 
rate of ~ 1.5 mm/yr), except for a few regions 
(Figure 12.9a) showing deviation from the 
regional-mean rate. For instance, the 
sterodynamic sea-level rise in the western 
equatorial Pacific and the eastern Bay of Bengal 
(BoB) is slightly higher compared to other regions, 
and there is a narrow zonal belt of slightly negative 
(1 - 2 mm/yr in magnitude) rate in the northwest 
Pacific (~20°N). The higher values in the western 
equatorial Pacific could be linked to the enhanced 
trade winds associated with the negative phase of 
Interdecadal Pacific Oscillation (IPO, see England 
et al. 2014) during the first decade of the altimeter 
period. The higher rates along the eastern rim of 
BoB are also attributed to natural wind variations 

in the equatorial Indian Ocean (Nidheesh et al. 
2013; Unnikrishnan et al. 2015), over recent 
decades. The sterodynamic sea-level rise in the 
SCS varies between 1 - 2 mm/yr, with a notable 
higher rate in the central SCS (Figure 12.9a).  

The CMR-driven sea-level rise, in general, is 
spatially uniform and higher than the 
sterodynamic sea-level rise almost everywhere in 
the SEAS (Figure 12.9b). The regional-mean rate 
due to CMR is ~ 2.9 mm/yr which is nearly twice 
the regional-mean rate due to sterodynamic sea-
level rise (~ 1.5 mm/yr). Note that the 
sterodynamic and CMR sea-level rise includes 
sea-level rise due to global-mean thermosteric 
sea-level rise (~1.2 mm/yr) and global-mean 
barystatic sea-level rise (~ 2.1 mm/yr) 
respectively, for the 1993 - 2021 period. Figure 
12.9 hence suggests that about two-thirds of net 
sea-level rise in the SEAS is caused by CMR. The 
sterodynamic sea-level rise is mostly contributed 
by GMTSL rise, indicating that the dynamic sea-
level rise is weak and confined to a few regions 
(western equatorial Pacific and eastern BoB) over 
the satellite period. In the following sections, we 
will further decompose the sterodynamic sea-level 
rise into contributions from local density (steric 
sea-level rise) and local mass changes 
(manometric sea-level rise, see Gregory et al. 
2019), and will discuss how these different 
processes contribute differently in the SEAS.       
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Figure 12.10: (a) Sterodynamic (SD) sea-level rise trend decomposed into, b) steric and c) manometric sea-level rise, estimated 
from high-resolution ocean reanalysis system (ORAS5). A sub-domain in the SEAS encompassing Sunda shelf, south China 
sea and the eastern Indian and western Pacific Oceans (gray-dashed rectangle) is shown to highlight the respective contribution 
of steric and manometric components to sterodynamic sea level change  d) Different components of sterodynamic sea-level 
rise, latitudinally-averaged over the region highlighted by rectangle in panels a, b, and c. The correspondence between the 
trends of steric anomalies (with respect to global-mean thermosteric sea level - red-dotted curve) and the manometric solution 
(green) is also shown. The number of valid grid-points in the latitudinal averaging (panel d) is given in Appendix A3.     

 
In principle, the sterodynamic sea-level change 
can be viewed as a combined response to two 
different physical processes: the sea-level change 
caused by local density (steric sea-level change) 
and the sea-level change due to sea-water (mass) 
redistribution (manometric sea-level change); i.e. 
 

𝜗𝜂

𝜗𝑡
 =  

1

𝑔𝜌0

𝜗(𝑝𝑏 − 𝑝𝑎)

𝜗𝑡
 −  

1

𝜌0
∫

𝜗𝜌

𝜗𝑡

𝜂

−𝐻
𝑑𝑧     (12.1) 

 

The first term in the RHS represents the sea-level 
change due to ocean mass variations which can 
be estimated from ocean bottom pressure 
changes (Pb) corrected for atmospheric loading 
(Pa). Note that Pa is the local sea-level pressure 
(SLP) anomaly with respect to the instantaneous 
average of SLP over the global ocean (Gregory et 
al. 2019). This term has been known as the 
bottom pressure sea level in the past literature 
and renamed to manometric sea-level change in 
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Gregory et al. (2019). And, the second term in the 
RHS represents the steric sea-level change 
estimated as the time-derivative of seawater 
density. We estimated steric sea-level changes 
from ocean temperature and salinity from ORAS5, 
using the equation of state (Jacket and Mcdougal, 
1995). The manometric sea-level is obtained by 
subtracting the steric sea level from the 
sterodynamic sea level (Eqn. 12.1).  

Figure 12.10b and 12.10c show the steric and 
manometric sea-level rise in the SEAS 
respectively. Steric sea-level rise contributes the 
sterodynamic sea-level rise mainly over deep 
oceans (Figure 12.10b and c.f. Figure 12.1 
showing the water depth) while manometric rise is 
more prominent over shallow shelf regions in the 
SEAS (Figure 12.10c). This “depth-dependent” 
contribution of steric and manometric sea-level 
change has been reported earlier (e.g. Landerer 
et al. 2007a).

  

              

 

 

Figure 12.11: (a) Steric sea-level-rise trend decomposed into, b) thermosteric and c) halosteric sea-level rise in the SEAS 
estimated from high-resolution ocean reanalysis system (ORAS5). A sub-domain encompassing Sunda shelf, south China sea 
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and the western Indian and eastern Pacific Oceans (gray rectangle) is shown to highlight the contribution of respective 
components to steric sea-level rise  d) Components of steric sea-level rise, latitudinally-averaged over the region highlighted by 
rectangle in panels a, b, and c. Red dashed line indicates the global-mean thermosteric sea-level trend for the period 1993 - 
2021, estimated from ORAS5 ocean temperature and salinity (1.2 mm/yr).  

 

As the deep ocean is more efficient in storing heat 
than shallow waters, the former experiences more 
thermosteric sea-level rise (Figure 12.11b) which 
leads to more steric sea-level rise over deep 
oceanic regions. At the same time, those 
enhanced deep ocean expansion would create a 
strong steric gradient (surface pressure gradient) 
between the deep and shallow regions leading to 
a redistribution of water to shelves, causing 
significant manometric sea-level rise over the 
shallow regions, as seen in Figure 12.10c. 
Readers may refer to Landerer et al. (2007b) to 
see more details of such mass redistribution 
process. Figure 12.11b indeed suggests that the 
steric sea-level rise in the SEAS is mostly driven 
by ocean thermal expansion and contribution from 
salinity changes (halosteric sea-level changes) is 
relatively weak (Figure 12.11c).  

To understand the relative role of steric and 
manometric sea-level rise to sterodynamic sea-
level change in our region better, let us focus over 
a small subdomain as highlighted by dashed 
rectangles on Figures 12.10 and 12.11. The 
selected region encompasses the shallow Sunda 
shelf (sea around Singapore) at its center and 
deep basins either side of it.  

A meridionally-averaged distribution of sea-level 
trend, as shown in Figures 12.10d and Figure 
12.11d, clearly shows how steric and manometric 
sea-level change contribute differently over deep 
and shallow regions in the SEAS. The steric sea-
level trend drops significantly (falls close to zero) 
over the Sunda shelf and then rises at either side 
of the shelf where water depth increases sharply 
(off to the continental slope, c.f. Figure 12.1). The 
manometric sea-level trend appears to be a mirror 

of the steric sea-level trend (green and red curves 
in Figure 12.10d), supporting the notion that the 
ocean adjusts to the spatially non-uniform steric 
sea-level rise by redistributing the ocean mass 
from regions of larger steric sea-level rise to 
regions of smaller steric sea-level rise (Landerer 
et al. 2007b). Even though the exact physical 
mechanism through which this mass transfer 
occurs is rather complex and not understood fully 
(see Bingham and Hughes, 2012), it is interesting 
to note that the sterodynamic sea-level rise in the 
Sunda shelf and off Singapore is primarily 
associated with “ocean internal mass 
redistribution”. Figure 12.10d also suggests that 
the manometric sea-level rise could be driven by 
the gradient in steric sea-level anomalies with 
respect to global-mean thermosteric change (red-
dotted curve in Figure 12.10d), rather than by the 
actual steric sea-level rise.   
 
As mentioned above, the steric sea-level rise in 
the SEAS is mostly contributed by thermosteric 
changes as seen in Figures 12.11b and 12.11c. 
Even though the contribution of halosteric sea-
level rise is weak compared to thermosteric 
changes, it is worth noting that the salinity 
contribution is positive in the SCS region and 
negative in the western Pacific and eastern Indian 
Ocean (Figures 12.11c and 12.11d). This spatial 
variability indicates the freshening of seawater in 
the SCS over the recent decades compared to the 
western Pacific for which the depth-integrated 
salinity seems increased. The physical processes 
that contribute to the halosteric sea-level rise in 
the SCS is not examined further for this report, but 
this will be an important perspective for CCRS 
research activities in future.              
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Figure 12.12: a) Sea-level rise trend from contemporary mass redistribution (CMR, as shown in Figure 12.9) estimated as the 
difference between altimeter and sterodynamic sea-level. Global-mean barystatic sea-level rise for the period 1993 - 2021 (2.1 
mm/yr) is subtracted from CMR-driven sea-level rise (panel a) to highlight the GRD effects in the SEAS and shown in b. 

 

We noted earlier that the CMR-driven sea-level 
rise (Figure 12.12a) includes the global-mean 
barystatic sea-level rise (GMBSL; ~2.1 mm/yr) 
and the regional deviations associated with the 
GRD effects. We have subtracted the GMBSL rate 
from the CMR sea-level trend to see if there are 
any notable deviations in the SEAS (Figure 
12.12b). No significant deviations from GMBSL 
rate observed in the SEAS, except for a noticeable 
pattern in the northern SCS (Figure 12.12b). A few 
of the previous studies indicated that the GRD 
effects in the tropical regions are rather uniform 
(e.g. Frederikse et al. 2020; Wang et al. 2021), 
and hence, the anomalous CMR pattern seen in 
the northern SCS (Figure 12.12a) would probably 
be related to either any “uncaptured” 
sterodynamic signal in the ORAS5 or some other 
processes which may not be accounted for by the 
GRD effects. To investigate this further, we 
compared the dynamic sea-level (DSL) rise from 
other two reanalyses - GECCO3 (German 
contribution of the Estimating the Circulation and 
Climate of the Ocean; Köhl, A. 2020) and 
GLORYS 12V1 (Global Ocean Physics 
Reanalysis; Supplementary figure A12.4) over the 
same period, and found that the DSL rise in the 
northern SCS in those products conforms each 
other but differ to that from ORAS5. This indicates 
that the anomalous CMR signal in the northern 
SCS (Figure 12.5a) might be originating from 
uncertainties in SD sea-level change in this region 
as represented in reanalyses. We do not go into 
further details on it in this report. In general, Figure 
12.12 suggests that the CMR related mean sea-
level rise in the SEAS is predominantly driven by 

GMBSL rise and the GRD effects are negligible as 
suggested by earlier studies mentioned above.    

As we have seen at the beginning of this section, 
the residual sea-level signal, i.e. signal obtained 
once the sterodynamic sea-level change is 
subtracted from GIA-corrected altimeter sea level, 
is considered an approximation to the contribution 
of CMR to sea-level rise over the satellite period 
in the SEAS (shown in Figure 12.12a). This 
approximated CMR contribution should be 
understood within the context of uncertainties 
associated with the sterodynamic sea-level 
changes, any other processes that contribute to 
the observed sea-level change, and the 
uncertainties in the altimeter measurements itself. 
Our sterodynamic sea-level estimate comes from 
a recently updated ocean reanalysis which 
encompasses the latest updates and advances in 
base ocean model and observational data 
assimilation for the post-altimetry era (see Zuo et 
al. 2019), and hence offer minimum uncertainties 
in the sea-level and other ocean state variables 
used in this report (ocean temperature and 
salinity). However, an exact assessment of the 
CMR driven sea-level rise should follow an 
independent estimate of GRD sea-level 
fingerprints using geodetic models (e.g. Harvey et 
al. 2021; Coulson et al. 2022). Such an exercise 
would also reveal the contribution of individual 
mass sources (e.g. Greenland ice sheet and 
mountain glaciers) to the observed sea-level rise 
in the SEAS. We are currently developing this 
analysis to include such independent CMR 
contributions using latest mass balance estimates 
from different sources (e.g. data from the Ice 
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Sheet Mass Balance Inter-comparison Exercise - 
IMBIE; Otosaka et al. 2023), which would 
complement the findings presented in this report 
in the near future.     

    

12.4. Observed sea-level rise around 
Singapore 
 
The vertical datum for all height measurements in 
Singapore (called Singapore Height Datum) is set 

to mean sea level at 0.0 m, which is taken as the 
average water level from the historical tide-gauge 
record at the Victoria Dock for the 1935 - 1937 
period (Singapore Land Authority, Singapore). As 
we have seen in the introduction, a large portion 
of the Singapore mainland (especially the coastal 
zones) lies well below five meters of MSL. MSL 
changes, ranging from seasonal to long-term 
(over a period of 100 years), hence have great 
concern for the coastal regions of Singapore as it 
could adversely affect Singapore’s coastal 
infrastructures. 

 

   

 
Figure 12.13: Time series of sea-level anomalies from tide gauges (black) and satellite altimetry (blue, averaged over 1 degree 
around each tide-gauge location). The difference between the tide-gauge and satellite time series is taken for the first four tide-
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gauge records which have more than 90% of data during the satellite period (1993 - 2021). A linear trend based on the least-
square method is also plotted as a dashed line over those four records (black - tide-gauge, blue - satellite, orange - difference. 
Units are mm/yr). The slope and standard error corresponding to each trend line are also given. The global-mean sea level from 
satellite altimetry (trend ~ 3.4 mm yr-1) is shown for a comparison in panel a (gray dashed curve), indicating that the mean sea-
level rise off Singapore over the last three decades is consistent with the rate of global-mean sea-level rise.  

 

Sea-level time series from ten tide-gauge records 
around Singapore are shown in Figure 12.13. 
Satellite sea-level data (¼ degree resolution) 
averaged at a 1-degree square domain around 
each tide-gauge record is also shown (blue 
curve). Note that, mean seasonal cycle (seasonal 
climatology) is removed from both satellite and 
tide-gauge data. There is a good level of 
agreement between tide gauge and altimeter time 
series at interannual periods (Figure 12.13), 
providing confidence on comparing their 
respective trends. Four out of ten records (Raffles 
Light House, Sultan Shoal, Tanjong Pagar and 
Sembawang) have more than 90% data over the 
altimeter period (1993 - 2021) and the trend 
estimates are given for those four records (Figure 
12.13). As we have seen in section 12.3 and for 
Figure 12.8, difference in sea-level rise trend 
estimates between tide-gauge record and 
altimeter sea level could indicate rate of local 
VLM, which is shown for those four records.  

Rate of sea-level rise around Singapore varies 
between 3.27 (Sultan Shoal) to 3.77 (Tanjong 
Pagar) with a mean rate (average rate for the four 
stations) of 3.56 mm/yr during 1993 - 2021. The 
mean rate from corresponding altimeter data (3.48 
mm/yr) is close to tide-gauge measured sea-level 
rise. Figure 12.13 shows that the rates of sea-level 
rise from tide-gauge and satellite at the four tide-
gauge stations agree well with each other. This 
agreement between tide-gauge and altimeter sea-
level trends indicates that the rate of local VLM in 
Singapore might be weak (< 0.2 mm/yr) compared 
to other coastal locations in the southeast Asian 
region (see Figure 12.8). Local VLM consists of 
VLM caused by GIA and other processes (local 
subsidence, tectonics, etc). As shown in section 
12.6 (Table 12.5), the GIA-induced land uplift rate 
is ~0.2 mm/yr. There is no consensus on the local 
subsidence or movements related to tectonics due 
to limited observations. See Section 12.6 for a 
detailed note on the VLM in Singapore.   

Figure 12.13 also suggests that the rate of mean 
sea-level rise around Singapore is consistent with 

the rate of GMSL rise (~ 3.4 mm/yr) over the 
satellite period. However, it is worth noting a few 
points on the processes that drive sea-level 
changes around Singapore as discussed in 
section 12.3. Contemporary mass redistribution 
(CMR) turns out to be the main driver of observed 
sea level rise around Singapore (explains about 
70% of the net observed rise). The CMR 
contribution mostly comes from the GMBSL rise 
over the 1993 - 2021 period which is about 2.1 
mm/yr (Figure 12.12). On the other hand, 
manometric sea-level (ocean internal mass 
distribution) drives large part of the sterodynamic 
sea-level rise (~23% of the total rise) with a very 
weak contribution from steric sea-level rise (due to 
the fact that shallow shelf does not support large 
steric changes compared to deep ocean).  

The combined contribution of both CMR and 
manometric sea-level suggests that nearly 90% of 
the observed sea-level rise off Singapore is 
“mass-driven”. The dominating contribution of 
CMR on sea-level rise around Singapore indicates 
how land ice melting from remote locations 
(mostly from mountain glaciers in mid-to-high 
latitudes) can impact low-lying countries in the 
equatorial regions. Also, the role of manometric 
sea level indicates that the dynamic sea-level 
changes off Singapore are essentially linked to 
ocean circulation, highlighting the importance of 
accurately resolving the circulation features in 
climate models to better predict the sterodynamic 
sea-level rise for the region. The coarse resolution 
of the current global climate models cannot 
resolve the narrow straits and coastal currents 
adequately, and our findings stress the need for 
high-resolution ocean modeling and dynamical 
downscaling of the ocean climate and sea level to 
obtain better future projections.                         
 

12.5 Sea-level projections 
 
Sections 12.3 and 12.4 provide an overview of the 
historical sea-level change in Singapore and the 
Southeast Asian region, and important contextual 
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information on driving mechanisms that are also 
relevant to the spatio-temporal evolution of future 
sea-level rise in this region. In the following 
sections, we present future sea-level projections 
for both Singapore and Southeast Asia for several 
tide gauge locations. We also discuss the 
strengths and limitations of the projections in order 
to promote well-informed coastal protection 
planning measures.  

The Intergovernmental Panel for Climate Change 
Sixth Assessment Report (IPCC AR6) (Fox-
Kemper et al., 2021; Garner et al., 2021) 
published in 2021 produced global and local sea-
level projections using state-of-the-art 
methodologies. Major advances in the sea-level 
projections in AR6 compared to previous IPCC 
reports (i.e., AR5 and SROCC) include: (i) the use 
of emulators to provide sea-level projections 
consistent with the AR6 assessment of equilibrium 
climate sensitivity and global surface temperature 
rise (Forster et al, 2021; Fox-Kemper et al, 2021; 
Slangen et al., 2022); (ii) the explicit consideration 
of accelerated sea-level associated with poorly-
understood ice sheet instability mechanisms 
through high-end storylines (Fox-Kemper et al, 
2021). One key difference is also the usage of 
historical tide gauge data in the AR6 methods of 
projecting vertical land movement, which 
contributes to RSL rise on a regional and local 
scale. This is the first time the non-climatic 
background component contributing to RSL rise 
has been included in the IPCC sea-level 
projections, using tide gauges. In this light, the 
following sections present sea-level projections 
from AR6 at the various tide gauges in Singapore 
and Southeast Asia.  

We follow the calibrated uncertainty terminology 
used in the IPCC AR6 here, in which scientific 
confidence levels (low, medium, high) represent a 
qualitative assessment of the number of lines of 
evidence and level of agreement among studies, 
whereas the likelihood of any projected value of 

sea-level rise (e.g., likely range) is a quantitative 
measure of uncertainty, expressed as 
probabilities. Other sea level terminology used in 
this chapter follows that of Gregory et al. (2019). 
We focus on three Shared Socioeconomic 
Pathways (SSPs): SSP1-2.6, SSP2-4.5 and 
SSP5-8.5 for all the sea-level projections shown 
in the following sections, to be consistent with the 
climate projections presented in the other 
chapters of this report. 
 

12.5.1 Data and methods 
 
Here we outline the main methodology utilised in 
the IPCC AR6 projections and our V3 projections 
for sea level. But for more technical details, do 
refer to the detailed report (Chapter 9 of IPCC 
AR6 WGI).  
 
AR6 methodology 

 
Sea-level projections from the IPCC AR6 are 
produced using the Framework for Assessing 
Changes to Sea-level (FACTS; Kopp et al, 2023). 
FACTS employs a Monte Carlo approach across 
the various drivers of GMSL rise and includes 
localisation of these global projections using GRD 
patterns, information of sterodynamic sea-level 
change from CMIP6 models and vertical land 
motion (including the effect of GIA) based on Kopp 
et al (2014).  In AR6, medium confidence sea-
level projections are tabulated until 2150, whereas 
thereafter until 2300 are considered low 
confidence sea-level projections. The type and 
number of models used, combined with expert 
judgment assessments, vary largely across the 
individual drivers. No single method was used to 
derive the projected sea level change by the 
different drivers for a homogeneous time period 
(e.g., 2020 to 2150). Table 12.2 below 
summarises the methodology used to estimate 
each driver of the IPCC AR6 sea-level projections. 

 
Table 12.2: Summarised methodologies respective to the sea level drivers according to 3 timelines: projections up till 2100, 
beyond 2100 till 2150 and till 2300. Heavily referenced from IPCC AR6 Chapter 9 and Table 1 from Slangen et al. (2022); refer 
to AR6 for full reference.  

 Sea level 

driver 

Projection for  

2014-2100  

(medium confidence) 

Projection for  

2100-2150  

(medium confidence) 

Projections for  

2150-2300  

(low confidence) 
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1 
Thermal 

expansion 

Two-layer emulator with climate sensitivity calibrated to the AR6 assessment and 

expansion coefficients calibrated to emulate CMIP6 models. 

2 

Ocean 

dynamic sea 

level 

Multivariate t-distribution fitted to ocean dynamic sea level produced from CMIP6 

models. This distribution is derived from CMIP6 ensemble zos field after linear drift 

removal, then combined with the emulator-based global mean thermosteric 

projections. 

3 

Glaciers Gaussian process 

emulated glacier model: 

GlacierMIP (Marzeion et 

al., 2020; Edwards et al., 

2021) 

AR5 parametric model re-fit to GlacierMIP (Marzeion 

et al., 2020).            

4 

Greenland Ice 

Sheets 

Medium confidence 

processes up to 2100: 

Emulated ISMIP6 

simulations (Box 9.3) 

(Edwards et al., 2021) 

  

            

Medium confidence processes: 

Parametric model fit to ISMIP6 simulations up to 2100 

extrapolated based on either constant post-2100 rates 

or a quadratic interpolation to the multimodel 

assessed 2300 range. Assumption of constant rates of 

mass change after 2100. 

Low confidence processes: 

Structured expert judgement (Bamber et al., 2019)  

5 

Antarctic Ice 

Sheets 

Medium confidence 

processes up to 2100: p-

box including (1) 

Emulated ISMIP6 

simulations (Edwards et 

al., 2021) and (2) 

LARMIP-2 simulations 

(Levermann et al., 2020) 

augmented by AR5 

surface mass balance 

model. 

Processes considered 

are surface mass 

balance and ice 

dynamics, which includes 

marine ice sheet 

instability (MISI). 

Medium confidence processes after 2100: 

p-box including (1) AR5 parametric AIS model and (2) 

LARMIP-2 simulations augmented by AR5 surface 

mass balance model, with both methods extrapolated 

based on either constant post-2100 rates or a 

quadratic interpolation to the multimodel assessed 

2300 range. 

  

Low confidence processes: 

(1) Single ice-sheet-model ensemble simulations 

incorporating Marine Ice Cliff Instability (MICI) 

(DeConto et al., 2021) and (2) structured expert 

judgement (Bamber et al., 2019) 

6 

Land Water 

Storage 

Statistical relationships between population and anthropogenic causes of changes 

in land water storage are determined: 

(1) Population and groundwater depletion relationship calibrated based on 

Konikow (2011), Wada et al., (2012) and Wada et al., (2016). 

(2) Population and dam impoundment relationship calibrated based on Chao et 

al., (2008), and adjusted to scenario-dependent based on the different SSP’s 

population variations (Kopp et al., 2014). 
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7 
Vertical Land 

Motion 

Using a Gaussian process spatiotemporal model based on tide-gauge data 

(updated from Kopp et al., (2014)) and GIA model, linear rates of VLM are derived. 

8 

Gravitational, 

rotational, and 

deformational 

(GRD) effects 

Sea-level equation solver (Slangen et al., 2014a) driven by projections of ice 

sheet, glacier, and land water storage changes is used to compute annual sea-

level fingerprints for each mass change contribution. 

 

Deriving V3 sea-level projections for 

Singapore 

 
The IPCC AR6 provided RSL projections for 
Singapore at 6 tide-gauges. These six tide-
gauges are Sultan Shoal, Sembawang, Raffles 
Light House, Tanjong Pagar, West Coast and 
West Tuas. Although there are a total of 13 
running tide gauges in Singapore that are 
managed by the Marine Port Authority (MPA), only 
the above-mentioned 6 tide gauges have records 
that span at least 15 years, which was the criteria 
for generating sea-level projections at tide gauges 
in AR6 (Kopp et al., 2014).  

Annual tide-gauge data from the Permanent 
Service for Mean Sea-Level (PSMSL) play a 
crucial role in the AR6 sea-level projections for 
vertical land movement (VLM)—a component that 
distinguishes local sea level projections from 
regional and global projections. As part of the 
IPCC methodology, the tidal data is processed 
through a spatiotemporal Gaussian model 
developed by Kopp et al. (2014) to estimate VLM. 
This analysis generates a linear projected rate of 

VLM, along with a corresponding standard 
deviation (Kopp et al., 2014). 

However, during our quality checks on the 
Singapore tide-gauge data in the PSMSL, we 
identified errors in the Sembawang annual tide-
gauge data. Specifically, we discovered that the 
data from the 1950s preceding a data gap was not 
referenced to the same benchmark as the rest of 
the dataset (Figure 12.14). The erroneous data 
associated with the Sembawang tide-gauge was 
subsequently revised and improved by PSMSL. 
The improved dataset was reprocessed using the 
Kopp et al. (2014) model.  

This step allowed us to generate revised VLM 
projections and update the AR6 sea level 
projections for the six tide gauges in Singapore. 
The AR6 projections without the VLM component 
were obtained from the IPCC authors (Garner et 
al., 2022). In accordance with the AR6 
methodology, we added our revised VLM 
projections with the AR6 projections that do not 
contain the VLM component and generated the 
total projected RSL for all six locations in 
Singapore. 
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Figure 12.14: Annual tide-gauge data at Sembawang. Shown in dashed blue is the original data on PSMSL and red is the 
corrected data.  

 

12.5.2 Global-mean sea level projections 
 

According to the IPCC AR6 WGI Report, global-

mean sea-level (GMSL) is projected to rise across 

all future climate scenarios. Until 2050, in 

accordance with the AR5 and Special Report on 

the Ocean and Cryosphere in a Changing Climate 

(SROCC) reports, the projected GMSL rise shows 

little variation depending on different scenarios. 

However, after 2050, the scenarios start to show 

more significant differences (Fox-Kemper et al., 

2021).   

 

There is medium confidence in these projections, 

with a likely GMSL rise of 0.19 (0.16–0.25) m 

under SSP1-2.6 and 0.23 (0.20–0.30) m under 

SSP5-8.5 by 2100 (Figure 12.15). 

 

The IPCC AR6 suggests an alternative approach 

to addressing uncertainty in future GMSL rise by 

factoring in the uncertainty associated with the 

timing of specific sea-level rise thresholds. 

Focusing on projections that only incorporate 

processes with medium confidence, it is likely that 

GMSL will surpass 0.5 m sometime between 2080 

and 2170 under SSP1-2.6 and between 2070 and 

2090 under SSP5-8.5. 

 

 
Figure 12.15: Projected rise in global-mean sea-level up to 
2150, relative to IPCC AR6 baseline 1995 - 2014, under three 
emission scenarios (SSP1-2.6, SSP2-4.5 and  
SSP5-8.5). Solid curves represent the median  
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(50th percentile), whilst the shaded bands represent the likely 
range (17th to 83rd percentile).  

 
It is likely that GMSL will exceed 1.0 m between 
2150 and beyond 2300 under SSP1-2.6, and 
between 2100 and 2150 under SSP5-8.5. 
However, it is unlikely to surpass 2.0 m until after 
2300 under SSP1-2.6, whereas it is likely to do so 
between 2160 and 2300 under  
SSP5-8.5 (Fox-Kemper et al., 2021). 

 

12.5.3 Sea-level projections for Singapore 
 
In the following subsections, we provide a 
comprehensive analysis of our sea-level 
projections. Our findings encompass both 
medium and low confidence projections, offering 
valuable insights for planning and decision-
making. The medium confidence sea-level 
projections extend up to the year 2150 (Section 
12.5.3.1). These projections serve as a robust 
basis for mitigation planning, providing 
stakeholders with a reliable framework for 
addressing potential sea-level rise impacts within 
a reasonable timeframe. Additionally, we present 
low confidence sea-level projections that extend 
beyond 2150, up until 2300 (Section 12.5.3.2). 
Despite their lower confidence level, these 
projections hold significance as they represent 
potential outcomes that cannot be entirely 
disregarded. By including these projections, we 
aim to equip stakeholders with a more 
comprehensive understanding of the range of 
possibilities, enabling them to make better-
informed decisions. 
 

12.5.3.1 Medium-confidence sea-level 
projections to 2150 

 

Here we present sea-level projections at the six 
tide gauges in two ways: (i) continuous projections 
for the period 2014-2100; and (ii) projected ranges 
at 2150 (Figure 12.16 and 12.17). Figure 12.16 
provides a timeseries visualisation of the 
projected change in mean sea level at the six 
locations, whilst Figure 12.17 summarises the 
projections by 2150 under the low, medium and 
high emission scenario on a map of Singapore.  

A consistent methodology was used in the AR6 
sea-level projections for the period 2014-2100, so 
we show these as continuous time series. For the 
period from 2100 to 2150, additional 
methodological assumptions were made that 
resulted in discontinuities in the time series. 
Therefore, we show only the projected ranges at 
2150. All sea-level projections are expressed 
relative to the AR6 baseline period of 1995-2014.  

Annual tide-gauge records of the change in RSL 
as recorded by these tide gauges prior to 2020 are 
also shown in Figure 12.17. See Table 12.3 for 
values of the median and likely range of sea-level 
projections at these gauges for three scenarios.  
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Figure 12.16: Time series of relative sea level change at the six primary Singapore tide gauges. Black solid line before 2020 shows observed relative sea level using 
annual tide gauge data taken from PSMSL. After 2020, continuous mean sea level projections up till 2100 and at 2150 for 3 SSPs (SSP1-2.6, SSP2-4.5, SSP5-8.5) 
are shown. Median (colored solid lines) and likely range (shaded regions) of the projections are shown. Projections at Sembawang have been adjusted with the new 
VLM projections taken into consideration. Both observed and projections are relative to the baseline 1995 – 2014. Individual locations of these tide gauges, indicated 
with a black cross, are shown on a map of Singapore on the top right corner.  
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Figure 12.17: Projected relative sea-level rise in Singapore at six tide-gauges (Sembawang, West Tuas, West Coast, Tanjong Pagar, Raffles Light House and Sultan 
Shoal) by 2150 under three emission scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5). Values shown reflect the median (likely range) projected sea-level change by 
2150 relative to the IPCC AR6 baseline 1995 - 2014. 
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Tide Gauges 
SSP1-2.6 SSP2-4.5 SSP5-8.5 

2100 2150 2100 2150 2100 2150 

Sultan Shoal 
0.51 

(0.34 – 0.74)  

0.82 

(0.50 – 1.24) 

0.63 

(0.46 – 0.88) 

1.05 

(0.72 – 1.52) 

0.85 

(0.66 – 1.15) 

1.47 

(1.03 – 2.12) 

Sembawang 
0.42 

(0.26 – 0.63) 

0.67 

(0.38 – 1.07) 

0.53 

(0.38 – 0.77) 

0.9 

(0.59 – 1.36) 

0.75 

(0.58 – 1.04) 

1.32  

(0.90 – 1.95) 

Raffles Light House 
0.42 

(0.24 – 0.65) 

0.68 

(0.35 – 1.09) 

0.54 

(0.36 – 0.79) 

0.9 

(0.56 – 1.38) 

0.76 

(0.56 – 1.06) 

1.32 

(0.88 – 1.97) 

Tanjong Pagar 
0.44 

(0.24 – 0.69) 

0.71 

(0.35 – 1.16) 

0.56 

(0.36 – 0.82) 

0.94 

(0.56 – 1.43) 

0.78 

(0.56 – 1.10) 

1.36 

(0.89 – 2.02) 

West Coast 
0.46 

(0.24 – 0.72) 

0.74 

(0.34 – 1.21) 

0.58 

(0.35 – 0.86) 

0.97 

(0.55 – 1.49) 

0.80 

(0.55 – 1.13) 

1.39 

(0.88 – 2.07) 

West Tuas 
0.45 

(0.23 – 0.72) 

0.72 

(0.33 – 1.19) 

0.57 

(0.34 – 0.85) 

0.95 

(0.54 – 1.47) 

0.79 

(0.54 – 1.12) 

1.37 

(0.87 – 2.05) 

Local mean 0.45 ± 0.03  0.72 ± 0.05 0.57 ± 0.04 0.95 ± 0.06 0.79 ± 0.04 1.37 ± 0.06 

Global mean 
0.44 

(0.32 – 0.62) 

0.68 

(0.46 – 0.99)  

0.56  

(0.44 – 0.76) 

0.92 

(0.66 – 1.33) 

0.77 

(0.63 – 1.01) 

1.32 

 (0.98 – 1.88) 

 
Table 12.3: Relative sea-level rise projections by 2100 in meters (relative to baseline 1995-2014) for 6 of Singapore’s gauges 
and the global mean. Values at each tide-gauge correspond to the median projection (likely range). Local mean is the average 
of the median values across all six locations. 
 

 
The spatial variability of projected RSL rise across 
the tide gauges in Singapore is found to be 
relatively small, with a variation of ± 3 - 6 cm by 
2100 and 2150 (Table 12.3). Among these tide 
gauges, Sultan Shoal exhibits the highest 
projected RSL rise with 0.51 (0.34 - 0.74) m by 
2100 under SSP1-2.6 and 0.85 (0.66 - 1.15) m 
under SSP5-8.5. By 2150, the projected rise at 
Sultan Shoal reaches 0.82 (0.50 - 1.24) m under 
SSP1-2.6 and 1.47 (1.03 - 2.12) m under SSP5-
8.5. This information could be of relevance to 
stakeholders engaged in conservative mitigation 
planning for Singapore's shorelines. By 
referencing the estimates at Sultan Shoal, 
stakeholders can obtain a valuable indication for 
setting their mitigation strategies. 

To gain a comprehensive understanding of the 
factors influencing sea-level change, the IPCC 
AR6 incorporates estimates from six key 
components: Antarctic Ice Sheet (AIS), Greenland 
Ice Sheet (GIS), Glaciers, Land Water Storage 
(LWS), Ocean Sterodynamic (OS) and Vertical 
Land Motion (VLM). The contribution of these 
processes to sea-level rise at Singapore’s tide 
gauges at 2100 and 2150 are shown in Figures 
12.18 and 12.19 (median and likely range). The 
methodology behind the derivation of these 
individual processes in the IPCC AR6 is described 
above in Section 12.5.1, Table 12.2.  
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Figure 12.18: Antarctic Ice Sheet (AIS), Greenland Ice Sheet (GIS), Glaciers, Land Water Storage (LWS), Ocean Sterodynamics 
(OS) and Vertical Land Motion (VLM) contributions to the Total Sea Level rise in centimeters at 6 of Singapore’s tide gauges by 
2100 under SSP5-8.5 (red) and SSP1-2.6 (blue). Likely ranges (17th to 83rd percentile) are indicated with the shaded boxes. 
Bold, horizontal solid lines represent the median (50th percentile).  
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Figure 12.19: Antarctic Ice Sheet (AIS), Greenland Ice Sheet (GIS), Glaciers, Land Water Storage (LWS), Ocean Sterodynamics 
(OS) and Vertical Land Motion (VLM) contributions to the Total Sea Level rise in centimeters at 6 of Singapore’s tide gauges by 
2150 under SSP5-8.5 (red) and SSP1-2.6 (blue). Likely ranges (17th to 83rd percentile) are indicated with the shaded boxes. 
Bold, horizontal solid lines represent the median (50th percentile).  
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 Contributor SSP1-2.6 SSP2-4.5 SSP5-8.5 SSP5-8.5 (Global) 

Ocean Sterodynamics 0.16 (0.09 – 0.23) 0.20 (0.15 – 0.26) 0.30 (0.22 – 0.39) 0.30 (0.24 – 0.36) 

Greenland Ice 0.06 (0.01 – 0.12) 0.09 (0.05 – 0.15) 0.15 (0.10 – 0.20) 0.13 (0.09 – 0.18) 

Antarctica Ice 0.12 (0.04 – 0.31) 0.13 (0.03 – 0.33) 0.13 (0.04 – 0.39) 0.12 (0.03 – 0.34) 

Glaciers 0.10 (0.07 – 0.12) 0.13 (0.11 – 0.16) 0.19 (0.17 – 0.22) 0.18 (0.15 – 0.20) 

Land Water Storage 0.02 (0.01 – 0.03) 0.02 (0.01 – 0.04) 0.02 (0.01 – 0.03) 0.03 (0.02 – 0.04) 

Vertical Land Movement 0.03 (-0.04 – 0.10) 0.03 (-0.04 – 0.10)  0.03 (-0.07 – 0.10)    

Total 0.51 (0.35 – 0.73) 0.63 (0.47 – 0.87) 0.85 (0.66 – 1.13) 0.77 (0.63 – 1.01) 

Table 12.4: Mean sea level projections under SSP1-2.6, SSP2-4.5 and SSP5-8.5 at Sultan Shoal, relative to baseline of 1995-
2014, in meters by 2100. Individual contributions of the six components driving sea-level change and the total mean sea level 
are shown. Median values (likely range) are shown. Global mean sea level projections are shown on the far right column for the 
highest emission scenario SSP5-8.5.  

 

Regardless of the emission scenario (SSP1-2.6 or 
SSP5-8.5), the AIS is projected to contribute the 
most to the uncertainty of total projected mean 
sea-level rise in Singapore by 2100 and 2150. 
Although the projected median values of 
sterodynamic sea-level change by 2100 and 2150 
are larger than the projected median values of 
AIS, AIS could likely (83rd percentile) contribute 
more or just as much to the total mean sea level 
rise in Singapore (Table 12.4).  

The changes in land water storage contributing to 
local sea-level rise in Singapore are almost 
negligible (median and likely range). In general, 
total sea-level rise (median) is projected to be 
higher for the worst-case scenario SSP5-8.5, with 
a larger likely range of uncertainties too. We see 
here that projected local sea-level rise in 
Singapore is largely scenario-dependent, with the 
exception of the contribution from the AIS and 
VLM, which was carefully explained in the IPCC 
AR6 Chapter 9 for projected global mean sea-
level. 

Unlike most of the other sea-level drivers, the 
likely range in the contribution of AIS to sea-level 
rise grows beyond 2100, as seen most 
significantly under SSP5-8.5. The IPCC AR6 
emphasises that there is low agreement on the 

relationship between scenario-dependence and 
the net AIS contribution to sea level. The net 
changes in ice sheets are broadly driven by two 
processes: surface mass balance and ice 
dynamics. A possible reason behind a higher, 
albeit minimal, median sea-level rise driven by AIS 
under SSP1-2.6 as compared to SSP5-8.5 by 
2150 (Figure 12.17) could be because of a 
negative contribution to sea-level rise from the 
Antarctic surface mass balance over the 21st 
century (Fox-Kemper et al., 2021). Warmer 
temperatures are associated with increased 
snowfall, and hence a fall in sea level. There is 
medium confidence that future contribution of the 
Antarctic surface mass balance to sea level will be 
negative under all emissions scenarios. However, 
it is likely that mass loss from the AIS from ice 
dynamic processes, which contributes positively 
to sea-level rise, will dominate in the longer term.  

 

12.5.3.2 Low-confidence sea-level 
projections to 2300 
 
In this subsection, we present a long-term 
perspective on sea-level rise in Singapore, 
focusing on one particular tide gauge: Sultan 
Shoal. In addition, we consider highly uncertain 
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ice sheet processes that could result in 
substantially larger sea-level rise than seen in the 
IPCC AR6 medium confidence projections. Sea-
level projections beyond 2150 and/or that included 
uncertain ice-sheet feedback processes (e.g. 
Marine Ice Cliff Instability (MICI); DeConto and 
Pollard, 2016) were assessed by IPCC AR6 as 
having low confidence, i.e., there was low 
agreement and/or limited evidence to inform their 
assessment. However, the low confidence 
projections presented in this section provide 
important information for longer planning time-
horizons and more fully represent the full range of 
potential future outcomes.  

Essentially, there are two types of information on 
low confidence sea-level projections presented in 
IPCC AR6: (i) assessed ranges of GMSL rise at 
2300 under the SSP1-2.6 and SSP5-8.5 
emissions scenarios that do not include highly 
uncertain ice sheet feedback processes; (ii) low-
likelihood high-impact storylines that include 
highly uncertain ice sheet feedback processes 
(such as MICI). Note that the storylines are 
presented as singular trajectories of sea-level rise 
that are available as local projections up to 2150. 
A qualitative description of the low-likelihood 
storylines presented in AR6 is presented in Box 

9.4 (Fox-Kemper et al, 2021). The key storyline 
elements are: a strong warming scenario (e.g. 
linked to high real-world climate sensitivity); 
faster-than-projected disintegration of marine ice 
shelves and subsequent widespread onset of ice 
sheet instability processes in Antarctica; more 
frequent and severe melt events than expected for 
the Greenland ice sheet.  

The main physical process considered in the LLHI 
storyline (low confidence) that is not included in 
the medium confidence projections presented in 
Sections 12.5.3.1 is the marine ice cliff instability 
(MICI). MICI is a process whereby ice cliffs at the 
edge of marine-terminating glaciers (such as in 
the Antarctic) become unstable and rapidly 
collapse. This process is a mechanism that could 
contribute to the potential collapse of the West 
Antarctic ice sheet, which could add to several 
meters of global sea-level rise by 2100 (e.g., 
DeConto and Pollard, 2016). 

Figure 12.20 shows the single trajectories of LLHI 
storylines (83rd and 95 percentiles) at Sultan 
Shoal until 2300 and the low confidence projected 
GMSL by 2300 (17th to 83rd percentile, low 
confidence) that does not include the MICI 
processes.
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Figure 12.20: Low confidence total relative sea-level change at Sultan Shoal (Singapore) until 2300 (relative to 1995-2014 
baseline) that include low-likelihood, high-impact (LLHI) ice sheet processes (i.e., MICI) that cannot be ruled out. Shaded regions 
before 2150 are medium confidence projections (median and likely range). Dashed (83rd percentile) and dotted (95th percentile) 
lines until 2150 and at 2300 (arrows) represent the low confidence LLHI storylines that include the unstable ice sheet processes. 
Low confidence projected global-mean sea-level change at 2300 that do not include MICI are shown with the shaded vertical 

bars. The future pathways shown are SSP1-2.6 (blue) and SSP5-8.5 (red).  
 
 

The low confidence projected GMSL under SSP5-
8.5 at 2300 could likely reach ~7 m (83rd 
percentile). However, if coupled with the highly 
uncertain ice sheet feedback processes such as 
MICI, 7 m of sea-level rise is projected to be 
obtained in Singapore just after 2150 under SSP5-
8.5.  

Based on the single trajectories of LLHI storylines 
for Singapore until 2300 (dashed and dotted lines 
in Figure 12.18), projected RSL rise could reach 6 
m by 2150 and almost 20 m by 2300 under SSP5-
8.5.  

While it is not possible to provide robust likelihood 
information on any of the low confidence sea-level 
projections, we know that the assessed ranges at 
2300 are much more likely to be reached than the 

LLHI storylines. Therefore, we recommend that 
decision makers treat the assessed ranges at 
2300 as indicative of the committed sea-level rise 
under low and high emissions. The LLHI storylines 
represent much more severe outcomes that 
cannot be ruled out based on the current level of 
scientific knowledge. Choice and use of these 
storylines will depend on the risk appetite of 
adaptation planners depending on the sector and 
application. It is important to note that there is no 
single community-agreed definition of a plausible 
maximum sea-level rise scenario and 
stakeholders may wish to consider other 
estimates in the literature, such as Dayan et al 
(2021) and van de Wal et al (2022).  
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12.5.3.3 Differences in V3 compared to V2 
 
Prior to the release of the AR6 sea level 
projections, mean sea level projections for 
Singapore are found in the Second National 
Climate Change Study for Singapore (V2) Chapter 
8 ‘Changes in Time Mean Sea Level’. Released in 
2015, this chapter was led by the UK Met Office. 
The V2 methods were based on the IPCC Fifth 
Assessment Report (AR5) sea-level projections, 
which represented the state-of-the-art at that time.  

V2 provided only one set of medium confidence 
sea-level projections for Singapore based on 
moderate (RCP4.5) and high (RCP8.5) 
greenhouse gas emissions scenarios. V2 
combined the likely range of global sea level rise 
from the IPCC AR5 with non-uniform spatial 
patterns of sea level change (“fingerprints”) from 
Slangen et al. (2014) to derive a median and likely 
range of projected mean sea level rise for the 
same processes shown in V3 (i.e., ocean 
dynamics, Greenland and Antarctic ice sheets, 
glaciers and land water). Following AR5, V2 used 
the Representative Concentration Pathways 
(RCPs) climate change scenarios instead of the 

SSPs presented in AR6. RCP4.5 is comparable to 
SSP2-4.5 andRCP8.5 to SSP5-8.5. V2 provided 
medium confidence projections up until 2100.  

The total mean sea-level rise shown in V2 under 
RCP4.5 was 0.53 (0.30 - 0.74) m and 0.73 (0.45 - 
1.02) m under RCP8.5 at 2100. The median 
projected value under RCP4.5 is comparable to 
the average projected sea-level rise by 2100 
under SSP2-4.5 in V3 (0.57 ± 0.04 m). 
Conversely, the median projected sea-level rise 
under RCP8.5 in V2 is slightly lower than the 
average projected sea-level rise by 2100 under 
SSSP5-8.5 in V3 (0.79 ± 0.04 m).   

The V2 and V3 projections are relative to different 
baselines. The projections in V3 are relative to a 
different baseline 1995-2014 while the V2 
projections are relative to 1986-2005. AR6 
quantified the baseline adjustment as +0.03 m if 
adjusting the global-mean sea-level projections 
from AR5 to the AR6 baseline. As Singapore’s 
rate of mean sea-level change is similar to the 
global mean (more in Section 12.4), we adopt this 
adjustment for the V2 sea-level projections as 
reflected in Figure 12.21.
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Figure 12.21: Summary of the sea-level projections given in V2 and V3 at 2100. Median (horizontal, bold lines for V3 and 
diamonds for V2) and likely range (shaded bars for V3 and error bars with caps for V2) shown from both V2 and V3. The 
projections from V3 shown here are at Sultan Shoal, whereas only one set of projections were given from V2.  
 

The V2 projections show that sterodynamic sea-
level change is arguably one of the largest, if not 
the largest (RCP8.5), component that contributes 
to the total projected sea-level rise. Both the 
median and likely range of the projected 
contribution of the AIS component had 
significantly increased in the V3 projections under 

both scenarios. Projected sea-level rise due to 
mass loss from glaciers and Greenland ice sheet 
and land water storage have reduced 
uncertainties in V3, stemming from improved 
modelling techniques and incorporation of more 
ice processes and feedback than the AR5 models 
which V2 projections were based on.  
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In the V3 projections, estimates of vertical land 
motion (VLM) contributing to RSL rise now 
consider more potential outcomes and non-
climatic processes as compared to V2, where only 
one process—glacial isostatic adjustment—was 
considered (Kopp et al., 2014, Marzin et al., 
2015). Therefore, this led to a larger range of 
uncertainties of RSL rise caused by VLM under all 
scenarios.  

 

12.5.3.4 Coastal Vulnerability Analysis 

Visualising and communicating coastal 
vulnerability is a crucial step in assessing the 
potential impacts of rising sea levels. One 
approach involves the use of digital elevation 

maps that depict specific elevations above a 
reference height, aligned with projected sea-level 
rise scenarios. These maps highlight areas that 
are at greater risk of inundation and can serve as 
valuable tools for decision-making and urban 
planning. However, it is important to note that this 
method represents just one way of assessing 
coastal vulnerability. Other approaches include 
assessing vulnerability based on socio-economic 
factors, ecological sensitivity, infrastructure 
exposure, and community resilience. 

The Singapore Land Authority (SLA) provided 
digital elevation maps that visually depict 
elevations below 1 m, 2 m, and 5 m in Singapore, 
represented by dark blue shading (Figures 12.22, 
12.23, and 12.24). 

 

 
Figure 12.22: Digital Elevation Map of Singapore above mean sea level, with all elevations below 1 m indicated in dark blue.  
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Figure 12.23: Digital Elevation Map of Singapore above mean sea level, with all elevations below 2 m indicated in dark blue.  
 

 
These elevation thresholds correspond to key 
sea-level rise projections for specific time 
horizons. For instance, the 1-meter elevation 
represents the upper limit of the likely range 
projected for 2100 (medium confidence), while the 
2-meter elevation corresponds to the upper limit 
of the likely range projected for 2150 (medium 

confidence). Additionally, the 5-meter elevation 
represents the upper limit of the likely range in a 
high-end scenario (low confidence) for 2150. All 
these projections are based on the worst-case 
future pathway SSP5-8.5. These digital elevation 
maps provide valuable insights into the potential 
impacts of sea-level rise in Singapore. 
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Figure 12.24: Digital Elevation Map of Singapore above mean sea level, with all elevations below 5 m indicated in dark blue. 

 

Figure 12.24 presents a striking depiction of 
coastal vulnerability in Singapore, highlighting 
areas below 5 meters that could potentially be 
inundated. While this scenario is considered low-
likelihood, it carries the potential for significant 
economic losses.  

The vulnerable areas primarily encompass the 
southern shores of Singapore, including the 
Central Business District located near the 
southeastern coast. It is worth noting that further 
research is required to gain a more 
comprehensive understanding of this situation. 
Interestingly, the areas at risk of inundation, as 
indicated by the dark blue shading, appear to align 
with the reclaimed land in Singapore. This 
observation underscores the need for continued 
investigation and assessment of coastal 
vulnerability in relation to land reclamation efforts. 

 

12.5.4 Sea-level projections in Southeast Asia 

Here we present sea-level projections until 2150 
(median and likely range) from the IPCC AR6 at 
some tide-gauge locations in Southeast Asia 
shown in Section 12.3. Time series of the 
projected RSL rise at a subset of the tide-gauges 
discussed in Section 12.3 are shown in Figure 
12.25 in a bid to provide an evolution of sea level 
change. However, not all the tide-gauges shown 
in Section 12.3 passed the IPCC AR6 criteria to 
generate sea level projections.  

Additional tide-gauge stations with sea-level 
projections are included here (i.e., additional cities 
in Southeast Asia; Table 12.5, Figure 12.26, 
Figure 12.27). 
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Figure 12.25: Time series plots of relative sea-level change in the past and projected future at a subset of tide gauges (country) discussed in Section 12.3. Shown in solid 
black are the annual tide gauge data taken from PSMSL at the respective tide gauges; shown in the other various colours with the shaded bands are the projected sea-level 
rise till 2100 under the different SSPs from the IPCC AR6. Observations and projections are relative to the baseline period 1995-2014. 



40 

 

 

Table 12.5: Projected relative sea level rise by 2100 and 2150 under SSP1-2.6, SSP2-4.5 and SSP5-8.5 at various locations in Southeast Asia and some peripheral locations 
(i.e., Zhapo, Darwin and Palau; Figure 12.26). The values shown are meters of sea-level change relative to baseline 1995-2014. Median (likely range) are presented. 
Projections of global mean sea level rise are also shown here, relative to the same baseline.  

 City/State (tide-gauge name) 

SSP1-2.6 SSP2-4.5 SSP5-8.5 

2100 2150 2100 2150 2100 2150 

1 Cebu City (Cebu) 
0.44 

(0.26 - 0.68) 

0.72 

(0.37 - 1.15) 

0.58 

(0.41 - 0.83) 

0.97 

(0.64 - 1.44) 

0.78 

(0.58 - 1.09) 

1.37 

(0.92 - 2.02) 

2 Manila (Manila, S. Harbour) 
0.99 

(0.81 - 1.22) 

1.55 

(1.21 - 1.98) 

1.12 

(0.96 - 1.37) 

1.80 

(1.49 - 2.26) 

1.33 

(1.13 - 1.63) 

2.20 

(1.77 - 2.85) 

3 Phuket (Ko Taphao Noi) 
0.50 

(0.33 - 0.72) 

0.80 

(0.48 - 1.21) 

0.60 

(0.45 - 0.84) 

1.00 

(0.69 - 1.46) 

0.82 

(0.62 - 1.12) 

1.42 

(0.99 - 2.06) 

4 Bangkok (Fort Phrachula Chomklao) 
1.56 

(1.41 - 1.76) 

2.40 

(2.13 - 2.77) 

1.68 

(1.54 - 1.91) 

2.65 

(2.35 - 3.09) 

1.89 

(1.71 - 2.18) 

3.05 

(2.65 - 3.67) 

5 Johor Bahru (Johor Bahru) 
0.43 

(0.23 - 0.68) 

0.70 

(0.34 - 1.14) 

0.55 

(0.35 - 0.82) 

0.93 

(0.55 - 1.43) 

0.77 

(0.55 - 1.09) 

1.34 

(0.87 - 2.01) 

6 Kuantan (Tanjung Gelang) 
0.42 

(0.23 - 0.66) 

0.68 

(0.33 - 1.1) 

0.54 

(0.35 - 0.8) 

0.91 

(0.55 - 1.39) 

0.76 

(0.55 - 1.06) 

1.32 

(0.87 - 1.98) 

7 Kota Kinabalu (Kota Kinabalu) 
0.44 

(0.28 - 0.66) 

0.71 

(0.39 - 1.12) 

0.56 

(0.41 - 0.8) 

0.95 

(0.63 - 1.41) 

0.78 

(0.60 - 1.08) 

1.36 

(0.94 - 2.00) 

8 Penang (Pulau Pinang) 
0.39 

(0.19 - 0.64) 

0.64 

(0.26 - 1.08) 

0.5 

(0.3 - 0.76) 

0.85 

(0.47 - 1.34) 

0.71 

(0.49 - 1.03) 

1.25 

(0.79 - 1.92) 

9 Da Nang (Danang) 
0.50 

(0.32 - 0.74) 

0.80 

(0.45 - 1.22) 

0.63 

(0.44 - 0.89) 

1.05 

(0.69 - 1.52) 

0.84 

(0.64 - 1.14) 

1.46 

(1.02 - 2.09) 

10 Yangon (Rangoon) 
0.62 

(0.43 - 0.84) 

0.98 

(0.64 - 1.40) 

0.71 

(0.53 - 0.96) 

1.17 

(0.83 - 1.62) 

0.93 

(0.72 - 1.23) 

1.58 

(1.14 - 2.21) 

11 Palau (Malakal) 
0.50 

(0.31 - 0.75) 

0.82 

(0.46 - 1.27) 

0.60 

(0.42 - 0.87) 

1.01 

(0.65 - 1.51) 

0.83 

(0.61 - 1.16) 

1.44 

(0.96 - 2.12) 

12 Darwin (Darwin) 
0.47 

(0.30 - 0.70) 

0.76 

(0.43 - 1.17) 

0.58 

(0.41 - 0.83) 

0.97 

(0.62 - 1.44) 

0.80 

(0.59 - 1.11) 

1.38 

(0.92 - 2.04) 

13 Zhapo (Zhapo) 
0.47 

(0.31 - 0.68) 

0.74 

(0.44 - 1.12) 

0.61 

(0.45 - 0.84) 

1.01 

(0.70 - 1.46) 

0.82 

(0.64 - 1.11) 

1.42 

(1.02 - 2.03) 

14 Singapore (Sultan Shoal) 
0.51 

(0.34 – 0.74)  

0.82 

(0.50 – 1.24) 

0.63 

(0.46 – 0.88) 

1.05 

(0.72 – 1.52) 

0.85 

(0.66 – 1.15) 

1.47 

(1.03 – 2.12) 

 Global mean 
0.44 

(0.32 – 0.62) 

0.68 

(0.46 – 0.99)  

0.56  

(0.44 – 0.76) 

0.92 

(0.66 – 1.33) 

0.77 

(0.63 – 1.01) 

1.32 

 (0.98 – 1.88) 
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Figure 12.26: Location of the 13 tide-gauges in the various Southeast Asian cities and countries listed in Table 12.5. Labels on the map indicate the city names.    
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Figure 12.27: Projected relative sea-level rise at some of the most densely populated Southeast Asian cities by 2150 under all emission scenarios considered in V3. 
Projections are relative to the baseline period 1995–2014.  
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Over this century, RSL is projected to rise at all 
the tide gauges listed in Table 12.5 regardless of 
the future emissions scenarios by 2100 and 2150 
(Figure 12.27). Similar to Singapore, RSL rise at 
most of these locations is likely to reach ~1 m by 
2100 under the high greenhouse gas emissions 
scenario (SSP5-8.5).  

However, this is with the exception of Manila and 
Fort Phrachula Chomklao, which will be 
addressed as ‘Bangkok’ from hereon as the tide 
gauge is located less than 10 km away from the 
populated city. By the end of the century (i.e., 
2100), Manila and Bangkok are likely to 
experience RSL rise of more than 1.5 m and 2 m 
respectively under SSP5-8.5. Under the low 
emissions scenario, RSL rise could likely reach up 
to 1 m in most of these cities and up to 2 to 3 m in 
Manila and Bangkok by 2150 (Figure 12.27). 
Under the high emissions scenario RSL rise could 
likely reach up to 2 m in most cities and exceed 
3m in Bangkok by 2150 (Figure 12.27).  

Land subsidence due to excessive groundwater 
withdrawal has been a well-established factor 
causing RSL rise since the 1970s (e.g., Ahmed et 
al., 2020; Siringan et al., 2019, Niesters et al., 
2021). In Bangkok, groundwater withdrawal has 
been attributed with land subsidence, with rates 
reaching up to 120 mm/yr in some areas (Aobpaet 
et al., 2013).  

Several studies have also reported subsidence 
rates up to centimeters per year in some coastal 
areas around Manila due to groundwater 
extraction (Rodolfo et al., 2020; Kim et al., 2019). 
In both cases of Manila and Bangkok, the 
extraction of groundwater has outpaced the 
natural recharge rate of the aquifers. As water is 
pumped out, the pressure in the aquifer 
decreases, causing the soil and rock layers above 
it to compact and settle. Over time, this causes the 
land surface to sink, leading to subsidence 
(Galloway et al., 2011).  

12.6 Vertical Land Movement 

While global sea-level rise is driven primarily by 
the thermal expansion of oceans and the melting 
of land ice, the RSL changes experienced at 
specific locations are influenced by a range of 
additional factors (IPCC, 2021). One of the most 
significant factors is vertical land movement, or 

vertical land motion (VLM, which can cause the 
land to sink or rise relative to sea level (Church et 
al., 2013). This motion can result from a variety of 
natural and anthropogenic processes, including 
tectonic activity, sediment compaction, 
groundwater withdrawal, and human-made 
structures (Kench et al., 2018).  

VLM is particularly important in regions such as 
Southeast Asia, where it can cause significant 
variations in local sea levels and exacerbate the 
impacts of global sea-level rise on coastal 
communities and infrastructure (Koh et al., 2021). 
In this section, we explore the factors of VLM and 
its importance for understanding RSL changes in 
the region. We use the term ‘vertical land 
movement’ in this section as referenced to 
Gregory et al. (2019), and the term ‘vertical land 
motion’ used in Section 12.5 is in accordance with 
the IPCC AR6 Chapter 9 terminology. The terms 
are often used interchangeably in publications, 
and do not have different physical meanings. 

VLM describes the change in the height of the sea 
floor or land surface (Gregory et al., 2019) and it 
affects RSL change. The need for understanding 
and quantifying VLM is crucial for producing 
robust sea-level projections. Vertical 
displacements of the ground could either cause a 
fall or rise in mean sea level relative to the 
occupants on land, given that the mean geocentric 
sea level remains constant.  
 

12.6.1 Factors causing vertical land 
movement 

The rate of VLM and the extent to which it affects 
RSL change varies temporally and spatially. 
These factors can be natural and/or human-
induced, and are able to have an impact on the 
land for up to millions of years (Figure 12.28).  

One factor causing VLM arises due to changes in 
mass redistributions within the atmosphere, 
ocean and continents caused by natural or 
anthropogenic mechanisms (Pfeffer et al., 2017). 
The solid Earth is still in a state of isostatic 
disequilibrium and continues to respond to the 
loss of ice sheets during the Last Glacial 
Maximum about 21 thousand years ago (e.g., 
King et al., 2010). This ongoing GIA results in 
varied rates of vertical displacements across the 
globe. 
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Figure 12.28: Significant factors driving vertical land 
movement (VLM) in Southeast Asia that are explained in 
Section 12.6.1. The temporal extent to which these factors 
affect VLM vary from days to millions of years (tectonics). 
Graphic and information is referenced to Pfeffer et la. (2017).  
 

Similarly, ongoing contemporary changes in land-
based ice sheets (e.g., melting Antarctic and 
Greenland ice sheets) and land water storage 
results in instantaneous changes in the geoid and 
VLM that must be considered. Together, these 
effects affect the rate of VLM and contribute to 
RSL change.  

Other natural factors that can also cause VLM 
include seismic activity such as earthquakes 
(Wöppelmann et al., 2016). Earthquakes occur 
when tectonic plates in the earth's crust shift, 
causing a sudden release of energy that creates 
seismic waves. This movement can result in uplift 
or subsidence of the land, which can affect local 
RSL rise (Wöppelmann et al., 2016; Shirzaei et 
al., 2021). At different stages of the earthquake 
cycle, which includes interseismic, coseismic, and 
postseismic periods, there are different rates and 
spatio-temporal extent of land movement (Pollitz 
et al., 2018). The extent of subsidence or uplift in 
the land near the fault depends on several factors, 
including the magnitude and duration of the 
earthquake, the location of the fault, and the 
properties of the surrounding geology (Pollitz et 
al., 2018). 

There are also anthropogenic factors such as 
groundwater withdrawal that can have significant 
impacts on VLM. Groundwater withdrawal causes 
the water table to drop, leading to a reduction in 
pore water pressure and compaction of sediment 
layers, which can cause subsidence (Galloway et 
al., 2019). Some of the cities that are most 
severely-affected by groundwater withdrawal-

induced land subsidence include Mexico City, 
Bangkok and Jakarta (Galloway et al., 2019; 
Wassmann et al., 2016; Firman et al., 2019). In 
addition to groundwater extraction, there are other 
anthropogenic factors such as oil and gas 
extraction, mining, and the construction of large 
dams that can result in land subsidence (Zhang et 
al., 2018).  

 

12.6.2 Observed vertical land movement in 
Singapore 

Understanding the past and present state of VLM 
in Singapore is crucial for accurately assessing 
and predicting future sea-level rise impacts on 
low-lying coastal areas. In this section, we 
examine the current knowledge of observed VLM 
in Singapore from published sources and some 
existing global positioning system (GPS) and/or 
global navigation satellite system (GNSS) data. 

VLM is often measured either using radar sensors 
or in situ GPS/GNSS stations. Studies such as 
Catalao and Fernandes (2013) and Catalao et al. 
(2020) had previously presented VLM rates in 
Singapore using the former technique. Both 
studies found greatest subsidence rates near the 
southeastern coasts of Singapore (-2 to -13 
mm/yr, from 2011 to 2016, Catalao et al., 2020). 
Catalao et al. (2020) suggested that a correlation 
between the geological setting of Singapore and 
subsidence rates exists, due to lower subsidence 
rates observed for unconsolidated material as 
compared to higher subsidence rates for 
consolidated sand. However, this relationship is 
still understudied, and the period over which VLM 
rates were presented in Catalao et al. (2020) (i.e., 
6 years) may be insufficient to robustly conclude 
the associated correlation with varied bedrock.  

Another way of examining VLM is using GPS data. 
Figure 12.26 shows the time series of recorded 
land movement at two of Singapore’s GPS/GNSS 
stations, named SIN1 and SING (Figure 12.26), 
taken from Nevada Geodetic Lab (Blewitt et al., 
2018). Linear trends of the measurements were 
taken over different segments of time (i.e., 
before/after a data gap or shift) to approximately 
quantify the rate of VLM in Singapore over the last 
decade or so. SIN1 shows negligible VLM, with 
arguably little subsidence of -0.4 to -0.5 mm/yr 
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over the past ~10 years. On the other hand, a 
vertical downward shift was recorded at SING on 
5 November 2015, with missing data the day 
before.  

According to the Singapore Land Authority (SLA), 
the recorded subsidence of ~5 cm was likely 
caused by the earthquake that occurred in 
Indonesia on 4 November 2015 (“GPS Station at 
Bukit Timah Base Recorded Subsidence”, 2015). 
Due to Singapore’s close proximity to the Sunda 

megathrust fault that borders the Indonesian 
archipelago, land subsidence in Singapore due to 
any significant future seismic activity is yet again 
plausible (Gee et al., 2010; Hermawan et al., 
2020). Such a phenomenon is not uncommon 
around the world. For instance, the 2011 Tohoku 
earthquake in Japan caused significant 
subsidence in coastal areas, while the 2010 
earthquake in Haiti caused up to 20 cm of 
subsidence in some areas ("Earthquake-Induced 
Land Subsidence," 2018). 

 

Figure 12.29: GNSS stations in Singapore (SIN1 and SING) showing the processed vertical component in centimeters (blue 
points). Linear trends were also plotted (in shades of orange and red) over different time periods in an attempt to show the rate 
of VLM observed in Singapore at these stations. Vertical dashed line represents an earthquake occurrence that most likely 
explains the vertical shift in measurements at SING. Data taken from the Nevada Geodetic Lab (Blewitt et al., 2018). 
 

However, subsidence was not observed at the 
other station, SIN1. A number of factors could 
have explained this discrepancy, given that 
Singapore is a comparatively small island-state. 
GPS stations are designed to detect changes in 
the position of the ground, which can be caused 

by a variety of factors, including tectonic 
movement, subsidence, and even human activity 
(Bock et al., 2016).  

The accuracy and sensitivity of GPS 
measurements can vary depending on factors 
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such as the location of the station, the type of 
equipment used, and the surrounding geology 
(Hashimoto et al., 2011; Ozawa et al., 2008). In 
the case of the November 4 2015 earthquake, it is 
possible that the other GPS station in Singapore 
was located further away from the epicenter of the 
earthquake, or was situated in an area where the 
ground was less susceptible to subsidence 
(Dragert et al., 2001). Additionally, variations in 
local geological conditions, such as soil 
composition and depth, can also influence the 
magnitude of subsidence recorded at different 
GPS stations (Hu and Wang, 2019).  

It is also important to note that subsidence is not 
always a uniform phenomenon and can vary in 
magnitude and location depending on the specific 
conditions of the area affected by the earthquake 
(Bock et al., 2016). Therefore, it is possible that 
the lack of subsidence recorded at the other GPS 
station in Singapore may be due to a combination 
of factors related to the site, the earthquake, and 
the measurement equipment used (Ozawa et al., 
2008). 

While GPS measurements can be a powerful tool 
for monitoring VLM, earthquakes can introduce a 
level of uncertainty into these measurements due 

to a range of factors. For example, the magnitude 
and type of earthquake can influence the 
magnitude and distribution of vertical land 
movement, while the sensitivity and accuracy of 
GPS equipment can vary depending on the 
specific site conditions. As a result, it can be 
challenging to accurately quantify vertical land 
movement and associated uncertainties in the 
aftermath of an earthquake. 

 

12.6.3 Future vertical land movement and its 
associated uncertainties to relative sea-level 
rise in Singapore  

As shown above, the GPS data suggests that 
different parts of Singapore experience different 
rates of VLM over the past few years. Although 
more detailed study needs to be done for accurate 
conclusions, we could nonetheless hypothesize 
that land is subsiding in some parts of Singapore 
over the past few years (Tay et al., 2022). This has 
important implications for research on past and 
future sea-level studies, as stakeholders should 
be ultimately concerned about the relative rise in 
sea-level with VLM taken into account.  

Tide Gauge Rate of vertical land 
movement due to GIA (VLM in 

mm/yr) 

Rate of sea-level change due 
to GIA (mm/yr) 

Sultan Shoal 0.21  -0.38 

Sembawang 0.19 -0.35 

Raffles Light House 0.20 -0.37 

Tanjong Pagar 0.19 -0.36 

West Coast 0.20 -0.37 

West Tuas 0.21 -0.38 

Table 12.6: Rates of vertical land movement due to GIA and sea-level change due to GIA component of VLM. Results taken 
from ICE6G_C (Peltier et al., 2015).  
  

As of 2022, the IPCC AR6 projections of VLM at 
tide gauges are the only set of projections that 
consider more than vertical deformation due to 
GIA. The projections are derived using a 
Gaussian process model that sums the global, 

regional and local fields, whereby the local 
component is generated based on a GIA model 
and historical tide-gauge data, in a bid to include 
non-climatic background factors (Kopp, 2013). 
Tide-gauges record changes in RSL and hence, 
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the measurements are inclusive of any net 
changes in VLM. 

VLM is projected to cause a fall in sea level in 
Singapore by 2150 (median) at almost all the tide 
gauges (Section 12.5.3.1, Figure 12.17). This 
could be largely dominated by the effects of GIA, 
which are causing multi-millennium rates of land 
uplift (Table 12.6). However, the range of 
uncertainties in the VLM projections (Figure 12.16 
and 12.17; Table 12.4) include the possibility of 
VLM adding to sea-level rise in Singapore (upper 
bound of likely range), instead of a fall (median). 
Additionally, tectonic activity is another factor that 
was not accounted for in the AR6 VLM 

projections, which increases the quantitative and 
qualitative uncertainties associated with future 
VLM in Singapore. The prediction of earthquakes 
alone with any degree of accuracy, for example, 
remains elusive and a challenging task for 
scientists (e.g., Jordan, 2011; McGuire, 2014). 

Site-specific analyses of VLM for Singapore play 
a crucial role in strengthening the knowledge base 
for informed coastal decision making. 
Comprehensively understanding the local sea-
level budget at coastal locations in terms of the 
driving processes is a high scientific priority for 
addressing the challenges posed by RSL rise.
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Appendix 

 

 
Figure A12.1: Seasonal cycle of sea level in the southeast Asian seas computed from satellite data for the period 1993 - 2021.  

 

 

 

 

Figure A12.2: Sea surface height change due to changes in gravity (Geoid) associated with GIA from ICE-5G (Peltier et al. 
2004).    
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Figure A12.3: Number of valid grid-points (i.e. ocean grid points) used in the latitudinal averaging of sea-level trends shown in 
Figures 12.7 and 8.   
 

 

 

 

 

Figure A12.4: Dynamic sea-level rise trend from GECCO3 (German contribution of the Estimating the Circulation and Climate 

of the Ocean) and GLORYS 12V1 (Global Ocean Physics Reanalysis; https://doi.org/10.48670/moi-00021). For GECCO 

(GLORYS), the trend estimation covers the period 1993 - 2018 (1993 - 2020). The patches on each panel indicate the trends 

which are not significant at 95% confidence level. 

 

  

https://doi.org/10.48670/moi-00021
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13.1 Introduction 

The dynamical downscaling of CMIP6 GCMs from 
coarse resolution of ~75 km - 200 km to 8 km 
resolution over the SEA domain and further 
downscaling to 2 km resolution over the western 
Maritime Continent domain was the most time and 
resource consuming aspect of the entire V3 study. 
The high-performance computing (HPC) 
dimension of V3 documented in this chapter will 
not only serve as a benchmark for the next set of 
national climate change projections for Singapore 
(V4) but will also provide useful information for 
other similar efforts worldwide and to the HPC 
community in Singapore and elsewhere. 

In this chapter we present numerical details of V3 
dynamical downscaling simulations, such as 
details of the regional model used for 
downscaling, number of grid points in the 8 km 
and 2 km domains, and the time step size used for 
each of the resolutions in section 13.2. In the 
subsequent section (section 13.3) we present 
details of the 3 HPC systems (Koppen, and 
ASPIRE 2A at Singapore’s National 
Supercomputing Centre NSCC, and Gadi at 
Australia’s National Computational Infrastructure 
NCI) used for carrying out the dynamical 
downscaling simulations. In section 13.4 we 
present some details about the computing and 
storage requirements of the V3 study. Scalability 
tests that were carried out to design workflow of 
simulations such as length of each simulation 
chunk and number of parallel chunks are 
presented in section 13.5. 

 

13.2 Numerical Details of V3 
downscaling 

The Singapore Variable Resolution (SINGV) 
model is the numerical weather prediction (NWP) 
model of the Meteorological Service Singapore 
that was developed in 2020 (Dipankar et al. 2020). 

This NWP version of the SINGV model domain 
covers Singapore, the Malay Peninsula and the 
Indonesian island of Sumatra, with a grid-
resolution of 1.5 km, having 1,092 points in 
longitude and 1,026 points in latitude. Since the 
SINGV model was designed to run in an NWP 
mode, it could not be used as-is in climate mode 
to run long-term climate simulations. Hence, the 
SINGV model was tailored to run as a climate 
model and the climate version is called the SINGV 
Regional Climate Model (SINGV-RCM). Notably, 
the diurnal cycle of the sea surface temperatures 
(SSTs) was implemented in the SINGV-RCM for 
which the SST fields are interpolated from the 
driving model grid resolution to the SINGV-RCM 
grid resolution and updated every 6 hours. Further 
details of the evolution from SINGV to SINGV-
RCM can be found in Chapter 5 of this report. 

All numerical models of the atmosphere have a 
dynamical core, which is responsible for solving 
the governing equations of atmospheric motion. 
The dynamical cores used by all operational 
configurations of the UM prior to July 2014 are 
called “New-Dynamics” (Davies et al., 2005). 
Following the implementation of New Dynamics, 
the Met Office initiated the development of 
“ENDGame” (Even Newer Dynamics for General 
atmospheric modelling of the environment) (Wood 
et al., 2014). ENDGame is an evolution of New 
Dynamics designed to maintain its benefits, whilst 
improving its accuracy, stability and scalability. 
ENDGame uses a semi-Lagrangian advection 
scheme and a semi-implicit scheme for the 
temporal discretization of the non-hydrostatic, 
deep-atmosphere equations of motion (Wood et 
al., 2014). The V3 8km domain has 1120 points in 
longitude and 560 points in latitude, and a 
timestep size of 240s, whereas, the 2km domain 
has 960 points in longitude and 960 points in 
latitude, and a timestep size of 120s. The 8km and 
2km downscaling domains are shown in Figure 
13.1 below. 

 
 



 

 

 
Figure 13.1: V3 downscaling domain 

 

After an extensive period of testing the new 
SINGV-RCM and conducting various sensitivity 
experiments (see Chapter 6), the final version and 
configuration was decided in late 2019 and the 
initial simulations for V3 projections commenced 
in early 2020. Since then, V3 simulations were 
coordinated across 3 HPC systems and 2 
continents for a period of 3 years. Final 
simulations stopped in March 2023. Using 
effectively tuned HPC resources, it took 1 month 
to conduct 10 years of 8km resolution simulations 
and 2 months for 10 years of 2km resolution. 
Because of the scaling properties of the UM 
model, simulations also had to be run in chunks of 
10 years (for 2km simulations) and 30 years (for 
8km simulations) only. Running all of this 
sequentially, this would have taken over 29 years 

to complete all V3 simulations. Because of 
running many simulations simultaneously in 
parallel, the time was reduced by a factor of 10. 
However, this took an enormous effort on every 
staff contributing to V3 to monitor all the parallel 
simulations, including restarting, trouble-shooting, 
house-keeping and post-processing. 
 

13.3 HPC Systems Used 
 
The V3 production runs were carried out on 3 HPC 
systems across 2 continents, two at NSCC 
(Koppen and Aspire 2A [A2A]), and one at NCI 
(Gadi) in Australia (refer Figure 13.2). NCI is made 
available through NSCC’s network and 
arrangements.  

 



 

 

 
Figure 13.2: Geographical Distribution across 3 HPC Systems 

 
The initial plan was to carry out the initial set of 
simulations on Koppen in 2020 and then later 
conduct the majority of the runs on A2A starting 
February 2021. However, due to COVID-19 
related supply chain disruptions in the availability 
of semiconductor chips during 2020 and beyond, 
the A2A delivery was delayed by almost 15 
months.  

To mitigate the potential delay, NSCC proactively 
employed a multi-pronged strategy to address this 
matter. At the request of CCRS, NSCC purchased 
an additional 1 PB of storage equipment (valued 
at SGD400K) to upgrade Koppen storage from the 
initial 1 PB to 2 PB to support the V3 project on 
Koppen.  

NSCC also engaged their international partner in 
Australia, National Computational Infrastructure 
(NCI), to secure 15 million CPU core-hours/month 
and 5 PB of storage/month, on their Gadi 
supercomputer (15 PFlops) for a period of 12 
months, starting from July 2021. As a result, 
NSCC brought the V3 project up to speed within 5 
months avoiding a potential 15 months delay due 
to A2A’s late delivery.  

Once A2A hardware is available, NSCC made 
special provisions by providing dedicated access 
to half of the entire A2A design capacity, and 
allocated 35 million CPU core-hours/month and 
10 PB/month of storage, starting from June 2022 
till Dec 2022, to accelerate the V3 research work.  

In total, over the 3 supercomputers, NSCC has 
provided 306M CPU core-hours and 144 PB of 
storage from July 2021 till Dec 2022. This is about 
12 M CPU core-hours and 108 PB more than what 
CCRS is entitled, based on the original 
arrangement which is 295 M CPU core-hours and 
36 PB of storage over a 12 months period. The 
additional HPC resources, worth about SGD 
3.06M, is provided by NSCC at a goodwill basis at 
no additional cost to CCRS.     

The distribution of V3 simulations across the 3 
HPC systems is shown in Table 13.1. As can be 
seen, almost two-thirds of the simulations were 
carried out in Singapore, and the remaining one-
third in Australia. 



 

 

Table 13.1: Distribution of Simulations across 3 HPC Systems 

V3 Simulations NSCC 
Koppen 

NCI 
Gadi 

NSCC 
A2A 

ERA5_8km, ERA5_2km x   

MIROC6_8km x   
MPI_8km, MPI_2km  x  
NorESM_8km, NorESM_2km  x  
UKESM_8km  x  
UKESM_2km   x 
ACCESS_8km, ACCESS_2km   x 
EC-Earth_8km, EC-Earth_2km   x 

 

Following is a description of the three HPC 
systems used for producing all V3 simulations. 
 
Koppen: NSCC Koppen is specifically designed 
to support HPC research activities in climate and 
environment research in areas such as advanced 
modelling and simulation and weather pattern 
analysis. It is a Cray XC50 supercomputer system 
with 160 TFLOPS computing capacity, consisting 
of 52 nodes and 1.2 PB of lustre storage. 
 
The special features of the Cray XC50 
supercomputer include: 
➢ the industry-leading Aries network 

interconnect, which is designed specifically to 
meet the performance requirements seen in 
today’s emerging class of data center GPU 
accelerated applications, where high node-to-
node communication performance is critical; 

➢ a Dragonfly network topology tightly integrated 
with Aries that reduces communication latency 
for scale-out applications that rely heavily on 
the Message Passing Interface; 

➢ optional SSD-enabled DataWarp I/O 
accelerator technology, enabling software-
defined provisioning of application data for 
improved performance; 

➢ innovative cooling systems to lower customers’ 
total cost of ownership; 

➢ the next-generation of the high performance 
and tightly integrated Cray Linux Environment 
that supports a wide range of applications; 

➢ image-based systems management for easy 
upgrades, less downtime, and field-tested 
large-scale system deployment; 

➢ enhancements to Cray’s HPC optimized 
programming environment for improved 
performance and programmability of GPU 
environments; 

➢ support for next-generation Intel Xeon and Intel 
Xeon Phi processors. 

 
The detailed Koppen system information can be 
found in the Table below: 

 
 
 
 

 

 

 

 

 

 



 

 

Table 13.2: Koppen HPC Systems details 

 
  
A simplified layout of the Koppen system is shown in Figure 13.3 below. 
 

 
Figure 13.3: Simplified layout of Koppen (credit: NSCC) 

 

ASPIRE 2A: NSCC ASPIRE 2A’s (Figure 13.4) 
core computing capabilities deliver a level of 
performance and flexibility needed to support a 
multifaceted array of HPC applications. The 
computational components are balanced with 
high-speed storage subsystems and a low latency 

high speed interconnect that ensures to deliver 
the highest levels of performance across a broad 
spectrum of applications. It is an AMD-Based Cray 
EX supercomputer with 8 PB of GPFS FS and 10 
PB of Lustre FS storage and Slingshot 
interconnect. 



 

 

 
Figure 13.4: ASPIRE 2A specifications (credit: NSCC). 

 

The building block of the HPE Cray EX 
supercomputer is the liquid cooled cabinet, a 
sealed unit that uses closed-loop cooling 
technology. (Figure 13.5) Each EX cabinet holds 

eight compute chassis and a total of 64 blades 
with eight Slingshot injection ports per blade. Each 
blade supports four dual-CPU nodes for a total of 
512 processors per cabinet. 

 



 

 

 

Figure 13.5: Building Block of HPE Cray EX supercomputer 

 

This NSCC HPC ASPIRE2A system comprises of 
the following: 
1. HPE Cray EX 2x AMD EPYC Millan 7713 

providing total compute capacity of up to 10 
PFlops, 512 GB memory and 128 cores per 
node. This includes a GPU compute capability 
with 4 x NVIDIA A100-40G SXM per node. 

2. AI System:  Total of 18 AI GPU nodes. This is 
divided into 12 nodes with 4x Nvidia A100 
40GB and 12 TB nvme local storage; and 
further 6 nodes with 8x Nvidia A100 40GB and 
14TB nvme local storage. The access to the AI 
systems is via ASPIRE2A “ai” queue. 

3. High Frequency:  16 DL385 High Frequency 
Nodes. These are supported by a Dual-CPU 
AMD 75F3 (32 cores/CPU + 32 cores/CPU = 
64 cores in a node). Additional components are 
a 100G High speed network, and 512GB DDR4 
ECC RAM (User accessible RAM = 500 GB). 

The operating system is running Red Hat 
Enterprise Linux-8. 

4. High Speed Network Interconnect (HPE 
Slingshot):  All nodes are connected with HPE 
Slingshot Interconnect (Dragonfly Topology). 
HPE Slingshot provides a modern, high-
performance interconnect for HPC and AI 
clusters that delivers high-bandwidth and low-
latency for HPC, ML, and analytics 
applications. 

5. Additional Features: Remote extended network 
connections to the A*STAR, NUS, NTU, SUTD 
and NEA sites; a parallel file system (Lustre & 
PFSS); Liquid cooled high-density Cray EX 
cabinets; Air cooled racks (specialized AI, 
Large memory, storage, login nodes) and an 
Altair Workload Manager. 

 

NCI Gadi: Gadi (see Figure 13.6 below) is NCI’s 
peak supercomputer and Australia's most 
powerful CPU-based research supercomputer. It 



 

 

is a 4,962 node supercomputer comprising Intel 
Sapphire Rapids, Cascade Lake, Skylake and 
Broadwell CPUs and NVIDIA V100 and DGX 
A100 GPUs, Gadi supports diverse workloads 
with well over 10 petaflops of peak performance. 
 

 
Figure 13.6: NCI Gadi 

 

Gadi contains more than 250,000 CPU cores, 930 
Terabytes of memory and 640 GPUs. The 
technical specifications of Gadi are: 

➢ 3,074 nodes each containing two 24-core 
Intel Xeon Scalable ‘Cascade Lake’ 
processors and 192 Gigabytes of memory 

o This includes 50 nodes each offering 1.5 
Terabytes of Intel Optane DC Persistent 
memory 

➢ 720 nodes each with two 52-core Intel Xeon 
Scalable 'Sapphire Rapids' processors and 
512 Gigabytes of memory 

➢ 804 nodes each with two 14-core Intel 
'Broadwell' processors 

➢ 192 nodes each with two 16-core Intel 
'Skylake' processors 

➢ 160 nodes each containing four Nvidia V100 
GPUs and two 24-core Intel Xeon Scalable 
'Cascade Lake' processors. 

➢ 10 nodes each with two 14-core Intel 
'Broadwell' processors and 512 Gigabytes of 
memory 

➢ 2 nodes of the NVIDIA DGX A100 system, with 
8 A100 GPUs per node. 

➢ Linking the storage systems and Gadi is 
Mellanox Technologies' latest generation HDR 
InfiniBand technology in a Dragonfly+ topology, 
capable of transferring data at up to 200 Gb/s. 

 

13.4 Computing and Storage 
Requirements 

Given that V3 involved running very high-
resolution long-term simulations (a total of ~2000 
model years at 8 km resolution and ~750 model 
years at 2 km resolution) for multiple GCMs (6 for 
8 km runs and 5 for 2 km runs) and multiple 
scenarios (historical plus 3 SSP’s), this required a 
large amount of computing and storage.  

Considering the needs and available resources, 
both storage and compute was regularly 
monitored and adjusted throughout the project in 
close collaboration with NSCC (see Table 13.2). 
Monthly meetings assured that any issues were 
promptly dealt with and simulations were not 
significantly affected. 

Although the required amount of computing and 
storage varied across the time span of the 
production runs which lasted for more than 3 
years, the peak computing usage was around 35 
million core-hours per month on A2A and around 
15 million core-hours per month on Gadi.  

The peak storage was around 12 PB on A2A and 
around 5PB on Gadi. The peak computing usage 
on Koppen was around 1.2 million core-hours per 
month, and for storage it was around 2 PB.  

After the completion of the simulations on Gadi in 
Australia, around 4 PB of data was transferred 
back to Singapore (A2A) with the help of NSCC 
and the Singapore Advanced Research and 
Education Network (SingAREN). After employing 
parallel transfers, we obtained peak throughputs 
on the order of 1 Gbps

.



 

 

 

Table 13.2: Screenshot of a resource table projecting the V3 computing and storage estimates on the 3 HPC systems from one of the monthly MSS-NSCC monthly 
meetings held on 08th March 2022.   



 

 

After the processing of all the level-0 data to levels 
1, 2, and 3, and final housekeeping, around 5-6 
PB of storage would still be needed, with a large 
fraction of this data stored in tapes and the rest as 
readily accessible live storage for the purpose of 
data sharing with stakeholders and for further 
analysis by CCRS.  

 

13.5 Scalability 

Scalability is the process optimisation for running 
compute-heavy simulations on HPC. This 
optimisation could significantly affect both timing 
and costs of resources. 

Carrying out scalability tests by changing the 
number of CPUs and parallelization options (e.g. 
Message Passing Interface [MPI], threading such 
as OpenMP) to design the workflow of model 
simulations is standard practice when producing 
long-term climate change projections in order to 
optimise computational resource utilisation. As a 
part of V3 workflow design, systematic scalability 

tests were carried out for both the 8km and 2km 
model configurations. 

Two metrics were used to measure scalability - 
minutes per simulated day (MPSD) and the 
scalability factor (SF). While MPSD is defined as 
the wall-clock (real) time required to complete 1 
day of model simulation (model time), SF is 
defined as the ratio of theoretical MPSD based on 
linear scaling with the number of CPUs to actual 
MPSD. The results from the performed scalability 
test for the 8 km and 2 km resolutions are shown 
in Tables 13.3 and 13.4, respectively. The 
optimisation process tries to minimise MPSD 
while making sure the SF is sufficiently high. 
Typically, SF should be at least 0.9 while aiming 
for a low MPSD. 

The tables show the total number of nodes used, 
the number of CPUs along the x direction of the 
domain (zonal direction) denoted by Xprocs, the 
number of CPUs in the y direction of the domain 
(meridional direction) denoted by Yprocs, number 
of threads used by each process, MPSD and SF. 

 
Table 13.3: 8 km Scalability Test 

Number of 
compute nodes 

used for 
simulation 

Number of CPUs 
used for longitude 

computes 

Number of CPUs 
used for latitude 

computes 

Minutes per 
simulated day 

Scalability factor 

6 16 48 15.7 1 

9 30 38 11.3 0.92 

10 28 42 11.3 0.83 

10 30 42 10.3 0.91 

15 30 62 50.7 0.12 

 

It is to be noted that although we tried the 
multithreading option, and the model showed 
improved scalability performance with this option, 
the results failed bit-reproducibility tests 
considered an important criteria to carry out long-
term simulations, and hence we had to use the 
single thread option for our simulations. This 

behaviour originates from the actual core model 
used (UM) and couldn’t be adjusted. 

Based on the results of the scalability tests shown 
in Tables 13.3 and 13.4, it was decided to use 10 
nodes (1260 CPUs) for each chunk of the 8km 
simulation and 14 nodes (1764 CPUs) for each 
chunk of the 2km simulation.  

 
Table 13.4: 2 km Scalability Test 

Number of 
compute nodes 

used for 
simulation 

Number of CPUs 
used for longitude 

computes 

Number of CPUs 
used for latitude 

computes 

Minutes per 
simulated day 

Scalability factor 



 

 

8 32 32 33 1 

10 40 32 29.3 0.9 

12 48 32 23 0.96 

14 42 42 21 0.9 

18 48 48 17.7 0.83 

 

13.6 Summary 
In summary, a total of ~2000 model years of 
dynamical downscaling simulations covering 
almost entire SEA at 8 km resolution and ~750 
model years of dynamical downscaling 
simulations covering the western Maritime 
Continent at 2 km resolution using the SINGV-
RCM were carried out for the current and future 
climates as a part of V3.  

Based on the availability of computing resources 
and V3 timelines, the simulations had to be carried 
out on 3 different HPC systems spanning 2 
continents, 2 systems in Singapore (NSCC 
Koppen and A2A) and 1 in Australia (NCI Gadi). 
Although the computing and storage requirements 
kept varying throughout the simulation period, the 
peak computing exceeded ~35 million core-hours 
per month and peak storage went as high as ~12 
PB.

 

In addition, around 4PB of data was transferred 
over from Australia to Singapore at peak transfer 
speeds of ~1 Gbps with the help of NSCC and 
SingAREN. 

Overall, the HPC journey to accomplish the V3 
simulations was challenging and adventurous, 
comprising significant resources from CCRS staff 
and dedicated time for managing the resources 
and simulations. With dedicated teamwork within 
MSS/CCRS and support from NSCC, NCI and 
SingAREN, along with the hard work by the V3 
team at CCRS, the challenges were successfully 
maneuvered, and the desired outcome was 
achieved in time to be able to meet the V3 delivery 
timelines. 
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14.1 Introduction 

It is now well recognised in the national and 
international community that the gap between 
scientific data producers and users needs to be 
reduced in order to make climate science 
information more usable for various stakeholders 
ranging from policymakers to the public. In this 
chapter, we present the various elements of the 
V3 communications and dissemination plan. 
Communicating the key messages, data, and 
products is an essential dimension of the V3 
study. For the V2 study, we did not have a 
systematic communication plan, and hence, 
having such a plan is an important addition to the 
overall V3 planning and delivery process. 

The V3 communications strategy has various 
dimensions: 

1. Topical Brochures and Videos 

2. Infographics 

3. Scientific Publications 

4. V3-Data Sharing and Visualisation Portal 

5. V3 Public Release 

6. Engagement with Singapore Ministries 

7. Engagement with Singapore Government 
Agencies 

8. Engagement with Singapore Media Houses 

9. Engagement with Regional and International 
Media Houses 

10. International Engagement 

 

14.2 Topical Brochures and Videos 

As a part of the V3 communications plan, topical 
brochures and videos have been planned on the 
following eight topics: 

1. V3 Explained 

2. Climate Change - From Global to Local 

3. Past and Future Sea-level Change 

4. Understanding Climate Extremes 

5. Using Climate Change Projections in Risk 
Assessments 

6. Probabilistic Climate Change Projections 
Explained 

7. Weather and Climate Drivers for Singapore 
Explained 

8. Application-ready Datasets Explained 

Out of the eight brochures, the first three are 
already completed and are presented below. 

 

14.2.1 V3 Explained 

Figures 14.1 to 14.4 show the thumbnails of the 
‘V3 Explained’ brochure. The cover page gives a 
high-level introduction to the context in which V3 
is carried out and its importance (Figure 14.1). To 
give readers a more comprehensive overview of 
the V3 project, the rest of the brochure presents: 

• Key outputs of V3 

• Main areas of climate change impact 
research underpinned by V3 

• Value proposition compared with V2 

• Various stages in the V3 project 

• Types of data and products that readers can 
expect 

• Data and product categories and how the 
data will be disseminated 

Definitions of SSPs, along with some 
abbreviations and acronyms used in the brochure, 
are provided for readers who are unfamiliar with 
the terminology (e.g., stakeholder agencies).  
 



 

 

Figure 14.1: Cover page of the ‘V3 Explained’ brochure  



 

 

Figure 14.2: The ‘V3 Explained’ brochure shows the key outputs of V3, key areas of research that it underpins, and key 
differences from V2. Definitions of SSPs, along with some abbreviations used, are provided for readers who are unfamiliar with 
the terminology.   



 

 

Figure 14.3: The ‘V3 Explained’ brochure presents the various stages in the V3 project, as well as the types of data and products 
that readers can expect.  



 

 

Figure 14.4: The ‘V3 Explained’ brochure gives an overview of the data and product categories and explains how the data can 

be accessed. 

 

14.2.2 Climate Change - From Global 
to Local 
Climate model downscaling is a scientific concept 
that is challenging to grasp for readers and 
stakeholders with whom CCRS has been 
engaging. There are various downscaling 
methods. For targeted communications with key 
stakeholders to enhance their understanding, a 
brochure is developed to specifically explain 
dynamical downscaling, the method adopted in 
the V3 project.  

Figures 14.5 to 14.8 show the thumbnails of the 
‘Climate Change - From Local to Global’ brochure. 

The cover of the brochure visually illustrates the 
idea of transforming global climate information to 
regional and then local climate information, with 
the subtitle reinforcing the key message that the 
V3 project plays a critical role in building a climate-
resilient Singapore. The brochure first introduces 
what GCMs are and how their limitations lead to 
the need for finer-resolution regional and local 
climate information, which is required for climate 
change adaptation planning in Singapore and the 
surrounding region. Readers are then introduced 
to dynamical downscaling using the V3 project as 
an example, in line with the objective of the 
brochure. Finally, the brochure presents the two-



 

stage downscaling process in V3 (i.e. from global 
to 8km resolution to 2km resolution) and explains 
how the reliability and robustness of V3 climate 

change projections are demonstrated by 
comparing V3 climate simulations with 
observational data and ERA-5 data. 

 

 

Figure 14.5: Cover page of the ‘Climate Change - From Global to Local’ brochure  



 

 

Figure 14.6: The ‘Climate Change - From Global to Local’ brochure begins with a brief introduction to GCMs and their limitations, 

explaining the need for finer-resolution climate information for climate change adaptation.  



 

 

Figure 14.7: The ‘Climate Change - From Global to Local’ brochure introduces the concept of dynamical downscaling, using the 
V3 project as an example to illustrate the concept.  



 

 

Figure 14.8: The ‘Climate Change - From Global to Local’ brochure presents the two-stage downscaling process in V3 and 

explains how the reliability and robustness of V3 projections are demonstrated. 
 

14.2.3 Past and Future Sea-level 
Change 

As a low-lying island country, Singapore is 
particularly vulnerable to sea-level rise. While this 
fact is widely accepted in Singapore, 
understanding the various drivers of sea-level 
change, especially at the local and regional scale, 
is generally lacking. PUB, Singapore’s national 

coastal protection agency, has been leading the 
efforts to save Singapore’s shores through 
different measures such as sea walls and 
mangroves. V3 sea-level projections in the 
Singapore region are essential to inform the 
adaptation design parameters. To enhance 
readers’ knowledge of sea-level drivers and raise 
awareness of the type of sea-level information 



 

available in V3, a brochure ‘Past and Future Sea-
level Change’ is developed.  

Figures 14.9 to 14.12 show the thumbnails of the 
brochure. The photo on the cover visually conveys 
Singapore’s vulnerability to sea-level rise, with the 
subtitle reiterating V3’s position in building a 
nation resilient to climate change. The brochure 
begins by listing several impacts of sea-level rise 
on Singapore to set the context and remind 

readers of the dire consequences. Some visually 
appealing illustrations are then used to explain the 
drivers of sea-level change at the global, regional 
and local scale, to raise awareness of the lesser-
known drivers such as land water storage and 
dynamical sea-level change. The brochure ends 
with an overview of the past and future sea-level 
information that will be provided by V3, such as 
the locations at which data sets are available. 

 
 

 
Figure 14.9: Cover of the ‘Past and Future Sea-level Change’ brochure  



 

 
Figure 14.10: To set the context, the ‘Past and Future Sea-level Change’ brochure begins with some examples of sea-level rise 

impacts on Singapore before explaining the drivers of global sea-level rise.  



 

 
Figure 14.11: The ‘Past and Future Sea-level Change’ brochure explains the drivers of local and regional sea-level change that 
are less commonly known.  



 

 
Figure 14.12: The ‘Past and Future Sea-level Change’ brochure presents the available past and future sea-level information 
from V3 for Singapore and the surrounding region. 

 

 

The other brochures and videos are in various 
stages of preparation. 
 

14.3 Infographics 

The findings of the V3 study will be presented in 
the form of infographics for various climate 
variables and processes, including some impact-

related metrics such as heat stress. One 
infographic was produced as a part of V2 as well 
(shown below), but we plan to have multiple 
infographics conveying various key messages 
related to physical climate change and impacts as 
a part of the V3 communications. As a part of this 
effort, we are also working with the local media 



 

houses to make the infographics more appealing 
and engaging for the public. 

 

  

Figure 14.13: Previous V2 infographic 

 

14.4 V3-Data Visualisation Portal (V3-
DVP) 

The V3-DVP is a key deliverable of the V3 Project 
and the primary tool for data and products 
dissemination both nationally and internationally. 
The design and development of the V3-DVP is an 
important advancement over the V2 data 
dissemination method which was primarily done 
via the Amazon Web Server (AWS) for a duration 
of 2 years (2015-2017). The data hosted on the 
AWS had a simple data catalog to display data 
availability which enabled registered users to 
select using checkboxes the data they are 
interested in and download them as Microsoft 
Excel spreadsheets. 

The V3-DVP is intended for local government 
agencies, researchers in institutes of higher 

learning (local and abroad) and the general public. 
The aim of V3-DVP is to present and share future 
climate change information for Singapore and the 
wider Southeast Asia region through a custom-
built website comprising a visualisation interface 
and data sharing portal that is 1) easily accessible 
through any standards-compliant web browser, 2) 
simple and intuitive to use and 3) highly 
interactive, in order to engage a wide range of 
end-users from stakeholder government 
agencies, institutes of higher learning (local and 
abroad) and the general public. It also acts as a 
gateway to facilitate data sharing of standardised, 
precomputed data products to registered end 
users, depending on their access credentials. 

The following schematic outlines the desired high-
level system elements for the V3-DVP. The 
following capabilities are desired: 1) dedicated 



 

website with a landing page, 2) interactive 
visualisation and 3) data sharing/download portal.

Through the interactive visualisation functionality 
users will have the flexibility to select the variable, 
time period, scenario, time-scale (annual and 
different seasons) and domain (whole of SEA or 
individual countries) they are interested in and the 
corresponding pre-generated figure will be 
displayed. They will also have the option to 
download the figure in png format. 

In addition, commonly used climate variables will 
be hosted on the portal and users will be able to 

search the data catalog and download the desired 
data after completing a simple registration 
process. There will be tiered access to data during 
the initial 2-3 years, before it is made open for all. 
During the initial phase, the data will be restricted 
to Singapore Government agencies and local 
Institutes of Higher Learning and Research 
Institutions. For advanced users there will also be 
scope for some data analytics capability. 

 

 
Figure 14.14: Screenshot of the interactive climate visualiser in V3-DVP 
 
The DVP with static and interactive visualisation 
capability, with around 4000 pre-generated 
images, will be launched as a part of the V3 
release.  

 

14.5 Engagement with Singapore 
Government Agencies 

Engagement with Singapore Government 
Agencies has been a key strength of the overall 
V3 planning process. The first Stakeholder 



 

engagement workshop was organised by the 
Climate Science Research Programme Office 
(CSRPO) in November 2020, and the second 
workshop was organised in January 2022. Both 
these workshops were attended by over 21 
Singapore Government agencies from various 
Ministries, and had over 100 participants. Various 
aspects of V3 from the V3 workflow were shared 
with stakeholders along with the data that will be 
produced and shared with the agencies. 
Stakeholder inputs were also sought on the 
various level-2 and level-3 data and products and 
also aspects on conveying uncertainty of the 
climate change projections in the V3 technical and 
stakeholder reports. 

In addition to the large annual workshops, there 
are various ad-hoc engagements with agencies 
throughout the year by means of working groups, 
for example, with PUB (Singapore’s National 
Water Agency) and Singapore Food Agency 
(SFA). CCRS has also been working closely with 
agencies such as MINDEF and NParks around 
climate change topics and the uptake of V3 data 
and products for various impacts and vulnerability 
studies and adaptation planning. A climate 101 
was conducted in June 2023 to share climate 
science with the Singapore Government 
agencies. 

Agencies are also working with Singapore IHLs on 
various projects that use V3 data through the 23M 
SGD Climate Impact Science Research funding, 
coordinated by the CSRPO. The first CISR SAP 
meeting concluded in May 2023 that met to 
finalise the projects that will be funded under the 
programme. 
 

14.6 Engagement with Singapore 
Media Houses 

Engagement with local media is essential to 
communicate V3 and its key findings with the 
public. Supported by NEA Corporate 
Communications Division (CCD), CCRS has been 
interacting with media through answering media 
queries and also being interviewed by news 
channels on topics of interest. A media technical 
briefing session was organised in December 2023 
to align the media with V3, share what is the kind 
of information that may be expected at the official 

V3 launch, and understand the materials needed 
for media to cover V3 in their news stories. 
Various media houses such as The Straits Times, 
Channel NewsAsia, etc. will be invited to the 
event. 
 

14.7 International Engagement 

Singapore organised its inaugural Singapore 
Pavilion at the 2022 United Nations Climate 
Change Conference 27th Conference of the 
Parties (COP27), from 6 to 18 November 2022 in 
Sharm el-Sheikh, Egypt. Themed around ‘Building 
a Future of Green Possibilities’, the Singapore 
Pavilion showcased how Singapore is actively 
planting the seeds of change in its economy, 
environment, and society to achieve a net zero 
future by 2050: 
(https://www.nccs.gov.sg/media/press-
releases/inaugural-singapore-pavilion-cop27/). 
V3 was featured under the Green Initiatives as a 
part of the Singapore pavillion at COP28, held 
during 30 Nov 2023 – 12 Dec 2023 in Dubai.  

Regional engagements will also be happening 
through the Asean Specialised Meteorological 
Centre (ASMC). Specifically, the V3 portal, 
findings from the study and data availability 
information will be shared with the ASEAN 
countries through the ASEAN Regional Climate 
Data Analysis and Projections-4 (ARCDAP-4) 
workshop. In addition, basic Python-based data 
analytics training will also be carried out as a part 
of the workshop to enable some of the ASEAN 
member countries to use the V3 data in the future 
for both physical climate change assessment and 
impact modelling. 

The Coordinated Regional Climate Downscaling 
Experiment-South East Asia (CORDEX-SEA) is 
an important regional branch of the global 
CORDEX community focusing on providing 
regional climate change projections in  the SEA 
region. We are a formal member of the CORDEX-
SEA and have been engaging with the research 
community associated with it. While there are 
overlaps between the two efforts (CORDEX-SEA 
CMIP6 regional projections and V3) there are 
important differences too that make them 
complement each other for carrying out more 
robust physical climate change assessment and 
impact studies over the SEA region. 



 

There are overlaps such as (1) some similar 
CMIP6 GCMs, (2) similar domain with small 
differences in latitudinal and longitudinal extents, 
and (3) some common scenarios (SSP1-2.6 and 
SSP2-4.5). There are some important differences 
such as (1) CORDEX-SEA uses SSP3-7.0 as their 
highest emission scenario, whereas V3 uses 
SSP5-8.5, and (2) the CORDEX-SEA primary 
spatial resolution for regional climate change 
projections is 25 km, whereas for V3 it is 8 km. 
Thus, the 2 datasets are highly complementary 
and we are engaging with the CORDEX-SEA 

community to discuss how to share our high-
resolution regional projections data from V3 
through the CORDEX-SEA Earth System Grid 
Federation (ESGF) data nodes.  

CCRS has also been engaging with the United 
Nations Food and Agriculture Organisation 
(UNFAO) to increase the regional uptake of V2 
and V3 data for food security planning over the 
SEA region. A joint statement by MSE and 
UNFAO was issued at COP27 around V2/V3 data 
sharing.  

 



Chapter 15 

Glossary of Terms 
 

 

A 
Adaptation Action that helps cope with 

the effects of climate change - for 

example construction of barriers to 

protect against rising sea levels, or 

conversion to crops capable of surviving 

high temperatures and drought. 

Aerosols Tiny liquid or solid particles of 

various composition that occur 

suspended in the atmosphere. 

Anomalies Departures of temperature, 

precipitation, or other weather elements 

from long-term averages 

Anthropogenic climate change Man-

made climate change - climate change 

caused by human activity as opposed to 

natural processes. 

AR4 The Fourth Assessment Report 

produced by the Intergovernmental 

Panel on Climate Change (IPCC) 

published in 2007. The report assessed 

and summarised the climate change 

situation worldwide.  

AR5 The Fifth Assessment report from 

the Intergovernmental Panel on Climate 

Change (IPCC) was published over 2013 

and 2014.  

AR6 The Sixth Assessment report from 

the Intergovernmental Panel on Climate 

Change (IPCC) was published over 2021 

and 2022.  

Atmospheric aerosols Microscopic 

particles suspended in the lower 

atmosphere that reflect sunlight back to 

space. These generally have a cooling 

affect on the planet and can mask global 

warming. They play a key role in the 

formation of clouds, fog, precipitation and 

ozone depletion in the atmosphere. 

 

B 
Barystatic sea-level change Global-mean 

sea-level change due to the addition of 

water that is formerly residing on land or 

atmosphere, or the removal of water from 

the oceans. 

Bias adjustment of climate change 

projections. Correcting systematic model 

simulation errors using observed data. 

Business as usual (BAU) A scenario used 

for projections of future emissions 

assuming no action, or no new action, is 

taken to mitigate the problem. WIthin IPCC 

AR6, the BAU scenario is the SSP585 

scenario. 

 

C 
Carbon capture and storage The 

collection and transport of concentrated 

carbon dioxide gas from large emission 

sources, such as power plants. The gases 

are then injected into deep underground 

reservoirs. Carbon capture is sometimes 

referred to as geological sequestration. 

Carbon dioxide (CO2) Carbon dioxide is a 

gas in the Earth's atmosphere. It occurs 



naturally and is also a by-product of 

human activities such as burning fossil 

fuels. It is the principal greenhouse gas 

produced by human activity. 

Carbon dioxide (CO2) equivalent Six 

greenhouse gases are limited by the 

Kyoto Protocol and each has a different 

global warming potential. The overall 

warming effect of this cocktail of gases is 

often expressed in terms of carbon 

dioxide equivalent - the amount of CO2 

that would cause the same amount of 

warming. 

Carbon emissions or footprint The 

amount of carbon emitted by an 

individual or organisation in a given 

period of time, or the amount of carbon 

emitted during the manufacture of a 

product. 

Carbon sink Any process, activity or 

mechanism that removes carbon from 

the atmosphere. The biggest carbon 

sinks are the world's oceans and forests, 

which absorb large amounts of carbon 

dioxide from the Earth's atmosphere. 

CCRS Centre for Climate Research 

Singapore and part of the Meteorological 

Service Singapore (MSS). It was 

officially launched in March 2013 and 

aims to advance scientific understanding 

of tropical climate variability and change 

and its associated weather systems 

affecting Singapore and the wider 

Southeast Asia Region, so that the 

knowledge and expertise can benefit 

decision makers and the community. 

Climate The prevalent or characteristic 

weather conditions of a place or region 

over a period of years. 

Climate change A pattern of change 

affecting global or regional climate, as 

measured by yardsticks such as average 

temperature and rainfall, or an alteration in 

frequency of extreme weather conditions. 

This variation may be caused by both 

natural processes and human activity. 

Global warming is one aspect of climate 

change. 

Climate Driver Global and regional climate 

drivers influence weather patterns that 

occur over months and seasons. There are 

several important climate drivers that help 

to understand what the general weather 

pattern might look like (example: ENSO).  

CMIP (CMIP5, CMIP6) Coupled Model 

Intercomparison Project – a global set of model 

experiments coordinated by the World Climate 

Research Program (WCRP) every ~7 years. 

The latest cycle is ‘Phase 6’, e.g. CMIP6. 

CO2 See carbon dioxide. 

Convection - Vertical air circulation in 

which cool air sinks and forces warm air to 

rise. 

Contemporary Mass Redistribution 

(CMR) sea - level change Satellite 

altimetry sea-level without sterodynamic 

and GIA-induced sea-level. Composed of 

barystatic sea-level change and GRD 

fingerprints. 

CORDEX Coordinated Regional Climate 

Downscaling Experiment. One of the MIPs 

(Model Intercomparison Projects) forming 

part of the overall CMIP6 model 

experiments. 

Cyclone A low pressure system with a 

cyclonic circulation. It is also called a 

depression and is generally associated with 

poor or stormy weather. The point of lowest 

atmospheric pressure marks the centre of 

the cyclone. 



 

D 
Dangerous climate change A term 

referring to severe climate change that 

will have a negative effect on societies, 

economies, and the environment as a 

whole. The phrase was introduced by the 

1992 UN Framework Convention on 

Climate Change, which aims to prevent 

"dangerous" human interference with the 

climate system. 

Deforestation The permanent removal 

of standing forests that can lead to 

significant levels of carbon dioxide 

emissions. 

Dew Point (also known as Dewpoint) 

The temperature to which air must be 

cooled in order to become saturated by 

the water vapour already present in the 

air. 

Divergence - A wind pattern whereby 

there is a net outflow of air from some 

point. 

Dynamical Downscaling of global 

climate models. Running a limited-

domain climate model (regional climate 

model) forced at the domain boundaries 

by the global model to produce higher 

resolution climate simulations within the 

domain. 

 

E 
Easterly Wave Also known as tropical 

wave, they are a type of atmospheric low-

pressure trough, oriented north to south, 

which moves from east to west across 

the tropics, causing areas of cloudiness 

and thunderstorms. An easterly wave or 

tropical wave can develop into a tropical 

cyclone. 

ECS Equilibrium Climate Sensitivity is 

the global and annual mean near-surface 

temperature rise that is expected to occur 

by doubling of CO2 in the atmosphere. 

El Niño El Niño can be distinguished when 

the surface waters in the eastern tropical 

Pacific extending westward from Ecuador 

become warmer than average. The 

changing pattern of the Pacific Ocean 

causes a shift in the atmospheric 

circulation, which then influences weather 

patterns across much of the earth, 

especially over the Maritima Continent. El 

Nino is like La Niña's brother, the totally 

opposite. 

ENSO (El Niño/Southern Oscillation) - An 

episode of anomalously high sea-surface 

temperatures in the equatorial and tropical 

eastern Pacific; associated with large-scale 

swings in surface air pressure between the 

western and central tropical Pacific. 

Evaporation The process by which water 

changes phase from a liquid to a vapor at a 

temperature below the boiling point of 

water. 

Evapotranspiration Vaporization of water 

through direct evaporation from wet 

surfaces plus the release of water vapor by 

vegetation. 

 

F 
Feedback loop In a feedback loop, rising 

temperatures on the Earth change the 

environment in ways that affect the rate of 

warming. Feedback loops can be positive 

(adding to the rate of warming), or negative 

(reducing it). The melting of Arctic ice 

provides an example of a positive feedback 

process. As the ice on the surface of the 

Arctic Ocean melts away, there is a smaller 



area of white ice to reflect the Sun's heat 

back into space and more open, dark 

water to absorb it. The less ice there is, 

the more the water heats up, and the 

faster the remaining ice melts. 

 

G 
GCM Global Climate Model (sometimes 

also called a General Circulation Model). 

GIA-induced sea-level change GRD 

due to ongoing changes in the solid Earth 

caused by past changes in land ice (i.e., 

during the Last Glacial Maxima).  

Geocentric sea-level change The 

change in local mean sea level with 

respect to the terrestrial reference frame. 

This does not include effects of vertical 

land movement.  

Glacier Sea-ice terminology. Describes 

a mass of snow and ice that is 

continuously moving from higher to lower 

ground or, if afloat, continuously 

spreading. 

Global average temperature The mean 

surface temperature of the Earth 

measured from three main sources: 

satellites, monthly readings from a 

network of over 3,000 surface 

temperature observation stations and 

sea surface temperature measurements 

taken mainly from the fleet of merchant 

ships, naval ships and data buoys. 

Global energy budget The balance 

between the Earth's incoming and 

outgoing energy. The current global 

climate system must adjust to rising 

greenhouse gas levels and, in the very 

long term, the Earth must get rid of 

energy at the same rate at which it 

receives energy from the sun. 

Global-mean sea-level rise Global-mean 

sea-level rise for the global mean of relative 

sea-level change, due to the change in the 

volume of the ocean. 

Global-mean thermosteric sea-level 

change Global-mean sea-level change due 

to thermal expansion. 

Global warming The steady rise in global 

average temperature in recent decades, 

which experts believe is largely caused by 

man-made greenhouse gas emissions. The 

long-term trend continues upwards, they 

suggest, even though the warmest year on 

record, according to the UK's Met Office, is 

1998. 

Gravitational, Earth’s Rotational, 

viscoelastic solid Earth Deformational 

(GRD) effects Changes in gravitation and 

rotation alter the geopotential field and 

hence the geoid, while deformation of the 

solid Earth changes the sea floor 

topography through vertical land 

movement. 

Greenhouse gases (GHGs) Natural and 

industrial gases that trap heat from the 

Earth and warm the surface. The Kyoto 

Protocol restricts emissions of six 

greenhouse gases: natural (carbon dioxide, 

nitrous oxide, and methane) and industrial 

(perfluorocarbons, hydrofluorocarbons, and 

sulphur hexafluoride). 

Greenhouse effect The insulating effect of 

certain gases in the atmosphere, which 

allow solar radiation to warm the earth and 

then prevent some of the heat from 

escaping. See also Natural greenhouse 

effect. 

 

H 



Hadley cell Thermally driven air 

circulation in tropical and subtropical 

latitudes of both hemispheres resembling 

a huge convective cell with rising air near 

the equator and sinking air in the 

subtropical anticyclones. 

Halosteric sea-level change Steric sea-

level change due to changes in salinity in 

the ocean. 

Humidity (also called Relative Humidity) 

Humidity is the measure of water vapour 

content in the air. Relative humidity is 

usually expressed as a percentage of 

total possible moisture content. 

 

I 
Intertropical convergence zone 

(ITCZ) Discontinuous belt of 

thunderstorms paralleling the equator 

and marking the convergence of the 

Northern and Southern Hemisphere 

surface trade winds. Associated with the 

monsoons. 

Inverse barometer effects on sea-level 

change Sea-level change due to 

atmospheric pressure variations. 

IPCC The Intergovernmental Panel on 

Climate Change is a scientific body 

established by the United Nations 

Environment Programme and the World 

Meteorological Organization. It reviews 

and assesses the most recent scientific, 

technical, and socio-economic work 

relevant to climate change, but does not 

carry out its own research. The IPCC was 

honoured with the 2007 Nobel Peace 

Prize. 

ISIMIP3 bias adjustment method in 

phase 3 of the Inter-Sectoral Impact 

Model Intercomparison Project 

(ISIMIP3). This method was employed in V3 

bias correction. 

 

J 
Jet Stream Relatively strong winds, 

concentrated within a narrow band in the 

upper atmosphere. 

 

K 
 

L 
La Niña An extensive cooling of the waters 

in the tropical central and eastern Pacific 

Ocean. It is the climatic opposite of the El 

Niño. 

Latent Heat Heat that is stored in water 

vapour in the atmosphere. When water 

vapour rises, cools and condenses into 

liquid water, it releases this heat into the 

surrounding atmosphere. This is the driving 

mechanism for tropical cyclones. 

LULUCF This refers to Land Use, Land-

Use Change, and Forestry. Activities in 

LULUCF provide a method of offsetting 

emissions, either by increasing the removal 

of greenhouse gases from the atmosphere 

(i.e. by planting trees or managing forests), 

or by reducing emissions (i.e. by curbing 

deforestation and the associated burning of 

wood). 

 

M 
Manometric sea level Change in the time-

mean local mass of the ocean per unit area, 

assuming the density does not change 

Maritime Continent A term commonly 

used by meteorologists, climatologists, and 

oceanographers to describe the region 

between the Indian and Pacific Oceans 



including the archipelagos of Indonesia, 

Borneo, New Guinea, the Philippine 

Islands, the Malay Peninsula, and the 

surrounding seas. 

Mean sea level The time-mean of the 

sea surface. 

Mesosphere Region of the atmosphere, 

situated between the stratopause and the 

mesopause, in which the temperature 

generally decreases with height. 

MICI Marine Ice Cliff Instability 

MISI Marine Ice Sheet Instability 

Mitigation Action that will reduce man-

made climate change. This includes 

action to reduce greenhouse gas 

emissions or absorb greenhouse gases 

in the atmosphere. 

Monsoon typically means the rainband 

associated with the seasonal reversal of 

winds and progression of the Inter-

tropical Convergence Zone (ITCZ) 

across the equator. 

MSS Meteorological Service Singapore. 

It is Singapore’s national authority on the 

weather and climate. It is an operational 

pillar under the National Environment 

Agency (NEA).  

 

N 
Natural greenhouse effect The natural 

level of greenhouse gases in our 

atmosphere, which keeps the planet 

about 30C warmer than it would 

otherwise be - essential for life as we 

know it. Water vapour is the most 

important component of the natural 

greenhouse effect. 

NCCS National Climate Change 

Secretariat. It was established in 2010 

under the Prime Minister’s Office (PMO) 

to develop and implement Singapore’s 

domestic and international policies and 

strategies to tackle climate change.  

NEA National Environment Agency is the 

leading public organisation responsible for 

ensuring a clean and sustainable 

environment for Singapore.  

 

O 
Ocean acidification The ocean absorbs 

approximately one-fourth of man-made 

CO2 from the atmosphere, which helps to 

reduce adverse climate change effects. 

However, when the CO2 dissolves in 

seawater, carbonic acid is formed. Carbon 

emissions in the industrial era have already 

lowered the pH of seawater by 0.1. Ocean 

acidification can decrease the ability of 

marine organisms to build their shells and 

skeletal structures and kill off coral reefs, 

with serious effects for people who rely on 

them as fishing grounds. 

Ocean dynamic sea-level change The 

local height of the sea surface above the 

geoid, with the inverse barometer correction 

applied. 

 

P 
ppm (350/450) An abbreviation for parts 

per million, usually used as short for ppmv 

(parts per million by volume). The 

Intergovernmental Panel on Climate 

Change (IPCC) suggested in 2007 that the 

world should aim to stabilise greenhouse 

gas levels at 450 ppm CO2 equivalent in 

order to avert dangerous climate change. 

Some scientists, and many of the countries 

most vulnerable to climate change, argue 

that the safe upper limit is 350ppm. Current 

levels of CO2 only are about 380ppm. 



Pre-industrial levels of carbon dioxide 

The levels of carbon dioxide in the 

atmosphere prior to the start of the 

Industrial Revolution. These levels are 

estimated to be about 280 parts per 

million (by volume). The current level is 

around 380ppm. 

Precipitation Precipitation is a liquid or 

solid form of water falling from the 

atmosphere to the earth's surface. 

Examples include rain, freezing rain, hail, 

and snow. 

 

Q 
 

R 
Radiative Forcing Radiative forcing 

is what happens when the amount of 

energy that enters the Earth's 

atmosphere is different from the amount 

of energy that leaves it.  

Relative Humidity (also called Humidity) 

Relative humidity is the ratio of water 

vapour in the air at a given temperature, 

to the maximum amount which could 

exist at that temperature. It is usually 

expressed as a percentage. 

Relative sea-level change The change 

in local mean sea level relative to the 

local solid surface, i.e., the sea floor. This 

includes effects of vertical land 

movement. 

Renewable energy Renewable energy 

is energy created from sources that can 

be replenished in a short period of time. 

The five renewable sources used most 

often are: biomass (such as wood and 

biogas), the movement of water, 

geothermal (heat from within the earth), 

wind, and solar. 

RWG Resilience Working Group (Singapore 

Government). 

  

S 
Sea level anomaly (SLA) Deviations of sea 

surface height from a mean level (i.e., 

variations from mean sea level). 

SINGV, SINGV-RCM The Singapore 

Variable Resolution weather model and its 

Regional Climate Model counterpart. 

SSP Shared Socioeconomic Pathway. For 

example SSP126, SSP245, SSP585 are 

scenarios of future socio-economic 

pathways used for simulations of future 

climates in standardised ways. 

Steric sea-level change Composed of 

thermosteric and halosteric sea-level 

change. 

Squall An atmospheric phenomenon 

characterized by an abrupt and large 

increase of wind speed within a duration of 

minutes, that suddenly diminishes. Squalls 

are usually associated with thunderstorms, 

and as such are often accompanied by 

heavy showers, thunder, and lightning. 

Example: Sumatra Squall Line. 

Sterodynamic sea-level change 

Composed of ocean dynamic sea level and 

global-mean thermosteric sea-level  

Storm Surge The positive or negative 

difference in sea level from the predicted 

astronomical tide, due to the forces of the 

atmosphere. The two main atmospheric 

components that contribute to a storm 

surge are air pressure and wind. 

Stratosphere The region of the 

atmosphere extending from the top of the 

troposphere (the tropopause), at height of 

10-17 km to the base of the mesosphere 



(the stratopause), at a height of roughly 

50 km. 

 

T 
Teleconnection A linkage between 
weather changes occurring in widely 
separated regions of the globe. 
Temperature Anomaly The deviation of 

temperature in a given region over a 

specified period from the long-term 

average value for the same region. 

Thermal expansion Thermal 

expansion happens when water gets 

warmer, which causes the volume of the 

water to increase. 

Thermosteric sea-level change Steric 

sea-level change due to changes in 

ocean temperature. 

Thunderstorm A local storm, usually 

produced by a cumulonimbus cloud, and 

always accompanied by thunder and 

lightning. 

Tide Sea-level instability/movement in 

an approximately daily or twice daily 

period. The movement is caused by the 

difference of the gravitational attraction 

between celestial bodies and the 

centrifugal acceleration of their rotation 

and is periodic because it is related to the 

motion of the sun, earth, and moon. 

Tide gauge Instrument measuring the 

sea level height. 

Tipping point A tipping point is a 

threshold for change, which, when 

reached, results in a process that is 

difficult to reverse. Scientists say it is 

urgent that policy makers halve global 

carbon dioxide emissions over the next 

50 years or risk triggering changes that 

could be irreversible. 

Trade Winds (also called Tropical 

Easterlies) The belts of wind on either side 

of the equator, blowing from the northeast 

in the Northern Hemisphere, and from the 

southeast in the Southern Hemisphere. In 

both hemispheres the winds become more 

easterly the closer they are to the equator. 

Tropical Cyclone The generic term for the 

class of tropical low-pressure systems, 

including tropical depressions, tropical 

storms, and hurricanes. Tropical cyclone 

systems typically last a week or more. 

Tropical Wave (also called Easterly Wave) 

A type of atmospheric trough, oriented from 

north to south, which moves from east to 

west across the tropics causing areas of 

cloudiness and thunderstorms. A tropical 

wave can develop into a tropical cyclone. 

Troposphere 

The lowermost layer of the atmosphere, in 

which air temperature falls steadily with 

increasing altitude. The troposphere begins 

at ground level and ranges in height from an 

average of 11 km (at the International 

Standard Atmosphere) at the poles to 17 

km at the equator. 

Tsunami A very large wave caused by a 

shallow submarine earthquake but can also 

be caused by submarine earth movement, 

subsidence, or volcanic eruption. 

 

U 
UNFCCC The United Nations Framework 

Convention on Climate Change is one of a 

series of international agreements on global 

environmental issues adopted at the 1992 

Earth Summit in Rio de Janeiro. The 

UNFCCC aims to prevent "dangerous" 

human interference with the climate 

system. It entered into force on 21 March 



1994 and has been ratified by 192 

countries. 

 

V 

VLM Vertical land movement The 

change in the height of the sea floor or 

the land surface. 

 

W 
Weather The state of the atmosphere 

with regard to temperature, cloudiness, 

rainfall, wind and other meteorological 

conditions. It is not the same as climate 

which is the average weather over a 

much longer period. 

Westerlies The dominant west-to-east 

motion of the atmosphere, centered over 

the middle latitudes of both hemispheres. In 

the tropics, monsoon westerlies are a 

significant feature. 
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